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ABSTRACT

The very challenging task of learning solution operators of PDEs on arbitrary domains accurately and
efficiently is of vital importance to engineering and industrial simulations. Despite the existence of many
operator learning algorithms to approximate such PDEs, we find that accurate models are not necessarily
computationally efficient and vice versa. We address this issue by proposing a geometry aware operator
transformer (GAOT) for learning PDEs on arbitrary domains. GAOT combines novel multiscale attentional
graph neural operator encoders and decoders, together with geometry embeddings and (vision) transformer
processors to accurately map information about the domain and the inputs into a robust approximation
of the PDE solution. Multiple innovations in the implementation of GAOT also ensure computational
efficiency and scalability. We demonstrate this significant gain in both accuracy and efficiency of GAOT
over several baselines on a large number of learning tasks from a diverse set of PDEs, including achieving
state of the art performance on a large scale three-dimensional industrial CFD dataset. Code is available at
https://github.com/camlab-ethz/GAOT.

1 Introduction

Partial Differential Equations (PDEs) are widely used to mathematically model very diverse natural and
engineering systems [14]. Currently, numerical algorithms, such as the finite element and finite difference
methods, are the preferred framework for simulating PDEs [44]. However, these methods can be computation-
ally very expensive, particularly for the so-called many-query problems such as uncertainty quantification
(UQ), control, and inverse problems. Here, the solver must be called repeatedly, leading to prohibitive costs
and providing the impetus for the design of fast and efficient surrogates for PDE solvers [36].

To this end, ML/AI based algorithms are increasingly being explored as neural PDE surrogates. In particular,
neural operators [22, 5], including those proposed in [27, 28, 33, 45, 20], which learn the PDE solution
operator from data, are widely used [2]. As many of these neural operators are restricted to PDEs on Cartesian
(regular) grids, they cannot be directly applied to most engineering and industrial systems, which are set
on domains with complex geometries, imposing a pressing need for neural operators for learning PDEs on
arbitrary domains (point clouds).

In this context, a variety of options have recently been proposed, including domain masking for FNO and
CNO [45], replacing FFT in FNO with direct spectral evaluations [31], augmenting FNO with learned diffeo-
morphisms [26] and mapping arbitrary point cloud data between the input domain and latent regular grids with
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learned encoders/decoders, while processing on the latent grid with FNO [29] or transformers [1]. Alternatives
such as end-to-end message-passing based graph neural networks [41, 15, 47, 46, 6, 13, 39] or end-to-end trans-
former based models [50, 18] have also been proposed.
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Figure 1. Normalized performance of GAOT and baselines
across eight axes, covering accuracy (Acc.), robustness
(Robust), throughput (Tput), scalability (Scal.) on time-
dependent (TD) and time-independent (TI) tasks.

A thorough comparison of the existing models, not just
in terms of accuracy but also computational efficiency
and scalability, is necessary to evaluate whether these
models are yet capable enough to act as surrogates for
highly successful finite element methods for engineer-
ing simulations [44]. As one of the contributions in
this paper, we performed such a comparison (see Sec.3
for details) to find evidence for an accuracy-efficiency
trade-off, i.e., accurate and robust models, such as the
message passing based RIGNO of [39] are not neces-
sarily computationally efficient nor scalable in terms
of training throughput and inference latency. On the
other hand, more efficient models such as GINO [29]
are not accurate enough (see the accompanying Radar
Chart in Fig. 1). Given this observation, our main goal
in this paper is to propose an algorithm to learn PDE
solution operators on arbitrary domains that is accu-
rate, computationally efficient, and can be seamlessly
scaled to real-world industrial problems.

To this end, we propose Geometry Aware Operator
Transformer (GAOT, pronounced goat) as a neural surrogate for PDEs on arbitrary domains. While being
based on the well-established encode-process-decode paradigm [41], GAOT includes several novel features
that are designed to ensure both computational efficiency and accuracy, such as

• Our proposed multiscale attentional graph neural operator (MAGNO) as the encoder between inputs on
an arbitrary point cloud and a coarser latent grid, designed to enhance accuracy through its multiscale
information processing and attention modules.

• Novel Geometry embeddings in the encoder (and decoder) that provide the model with access to
information about the (local) domain geometry, greatly increasing accuracy.

• A transformer processor that utilizes patching (as in ViTs [10]) for computational efficiency.

• A MAGNO decoder, able to generate neural fields, with the ability to approximate the underlying
solution at any query point in the domain.

• A set of implementation strategies to ensure that the computational realization of GAOT is efficient and
highly scalable.

Combining these elements allows GAOT to treat PDEs on arbitrary domains in a robust, accurate and
computationally efficient manner. We demonstrate these capabilities by,

• Extensively testing GAOT on 24 challenging benchmarks for both time-independent and time-dependent
PDEs of various types, ranging from regular grids to random point clouds to highly unstructured adapted
grids, and comparing it with widely-used baselines to show that GAOT is both highly accurate as well
as computationally efficient and scalable, see Fig. 1.

• The efficiency and scalability of GAOT is further showcased by it achieving state of the art (SOTA)
performance on the large scale three-dimensional industrial benchmark of DrivAerNet++ dataset for
automobile aerodynamics [12].
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• Through extensive ablations, we also highlight how the novel elements in the design of GAOT such as
multiscale attentional encoders and geometry embeddings crucially contribute to the overall performance
of our model.

2 Methods.

Problem Formulation. We start with a generic time-independent PDE,

D(c, u) = f, ∀x ∈ D ⊂ Rd, B(u) = ub, x ∈ ∂D, (1)

with u : D 7→ Rm, the PDE solution, c is the coefficient (PDE parameters), f is the forcing term, ub are
boundary values and D and B are the underlying differential and boundary operators, respectively. Denoting
as χD, a function (e.g. indicator or signed distance) parameterizing the domain D, we combine all the inputs
to the PDE (1) together into a = (c, f, ub, χD), then the solution operator S maps inputs into PDE solution
with u = Sa. The corresponding operator learning task is to learn the solution operator S from data. To
this end, let µ be an underlying data distribution. We sample i.i.d. inputs a(i) ∼ µ, for 1 ≤ i ≤ M and
assume that we have access to data pairs

(
a(i), u(i)

)
with u(i) = Sa(i), Thus, the operator learning task is to

approximate the distribution S#µ from these data pairs. In practice, we can only access discretized versions
of the data pairs, sampled on collocation points (which can vary over samples).

Similarly denoting a generic time-dependent PDE as,

ut +D(c, u) = 0, ∀x ∈ D ⊂ Rd, t ∈ [0, T ] u(0) = u0, x ∈ D, (2)

with, u : D × [0, T ] 7→ Rm, c the PDE coefficient and u0 the initial datum and the underlying (spatial)
differential operator D. Clubbing the inputs to the PDE (2) into a = (c, u0, χD), the corresponding solution
operator St, with u(t) = St(a) for all t ∈ [0, T ], maps the input into trajectory of the solution. The operator
learning task consists of approximating (St)#µ from data pairs

(
a(i), u(i)(t)

)
for all t ∈ [0, T (i))] and

1 ≤ i ≤M with samples ai drawn from the data distribution µ. However in practice, we only have access
to data, sampled on a discrete set of spatial points per sample as well as only on discrete time snapshots
t
(i)
n ∈ [0, T (i)] and have to learn the solution operator from them.

GAOT Model Architecture. The overall architecture of GAOT is depicted in Fig. 2. For simplicity of
exposition, we start with the time-independent case, where given inputs a(xj) on the point cloud D∆ =

{xj} ⊂ D, for 1 ≤ j ≤ J , GAOT provides an approximation to solution u of the PDE (1) at any query
point x ∈ D. At a high level, GAOT follows the encode-process-decode paradigm of [41]. In the first step,
an encoder transforms the input on the underlying point cloud D∆ to a latent point cloud D ⊂ Rd. The
resulting spatial tokens are then processed by a processor module to learn useful representations and its output
is remapped to the original domain D via the decoder, which allows evaluation at any query point x ∈ D.

Choice of Latent Domain. As depicted in SM Fig. B.1, the latent domain D (to which the encoder maps)
can be chosen in three different ways, namely i) a regular (structured) grid stencil, consisting of equispaced
points on a Cartesian domain (see also Fig. 2) ii) randomly downsampling the underlying point cloud
D∆ or iii) a projected low-dimensional representation, where a high-dimensional domain is projected to
a lower dimension (for instance using tri-plane embeddings in 3-D [8]) and a regular grid is used in the
lower-dimensional domain. GAOT is a general framework where any of these latent point cloud choices can
be employed for D.

Encoder. Given input values a(xj) on the underlying point cloud D∆, the encoder aims to transform it
into latent features we(y) at any point y ∈ D on the latent point cloud. Using a graph-neural operator (GNO)
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Figure 2. Schematic of the GAOT with an equispaced latent token grid. The encoder uses a multiscale
attentional graph neural operator (MAGNO) to aggregate the input data into geometry-aware tokens. A vision
transformer (ViT) block with residual connections processes tokens, enabling global exchange of information.
A MAGNO decoder identifies the nearest tokens around a given query point to decode the final field.

encoder as in GINO [29] would lead to,

w̃e(y) =

ny∑
k=1

αkK(y, xk, a(xk))φ(a(xk)), (3)

with MLPs K and φ and the sum above taken over all the ny points xk ∈ D∆ such that |y−xk| ≤ r for some
hyperparameter r > 0, where αk are some given quadrature weights. In other words, a GNO accumulates
information from all the points in the original point cloud that lie inside a ball of radius r, centered at the
given point y in the latent point cloud, and processes them through a kernel integral.

Our first innovation is based on the realization that this single-scale approach might be limiting the overall
accuracy. Instead, we would like to introduce a mechanism to integrate multiscale information into the encoder.
To this end and as shown in Fig. 2, we choose rm = smr0, for some base radius r0 and scale factors sm, for
m = 1, . . . , m̄ to modify GNO (3) by,

w̃m
e (y) =

nm
y∑

k=1

αm
k K

m(y, xk, a(xk))φ(a(xk)), (4)

for any fixed scale m and with MLPs Km, φ. The above sum is taken over all the nmy points xk ∈ D∆ such
that |y − xk| ≤ rm. To choose the quadrature weights αm

k , we propose an attention based choice,

αm
k =

exp(emk )
nm
y∑

k′=1

exp(emk′)

, emk =
⟨Wm

q y,W
m
κ xk⟩√

d̄
, (5)

with Wm
q ,W

m
κ ∈ Rd̄×m are query and key matrices respectively, completing the description of the attentional

graph neural operator (AGNO) (4) at each scale m.

Geometry Embeddings. The only geometric information in the afore-described encoder is provided by the
coordinates of the underlying points. This alone does not convey the rich geometric information about the
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domain that can affect the solution of the underlying PDE (2). Hence, we need to embed further geometric
information into the model. Deviating from the literature where geometric information is provided either by
appending them as node and edge features on the underlying graphs [15] or by encoding a signed distance
function [29], we propose to use novel geometry embeddings to encode this information. To this end and
as described in SM Sec. B.3, we can rely on local statistical embeddings for each point y ∈ D as all the
neighboring points xk in D∆ with |y − xk| ≤ rm have already been computed in the AGNO encoder. From
these points, we can readily compute statistical descriptors such as i) number of neighbors xk ∈ D∆, in the
ball Brm(y), ii) the average distance Davg = 1

nm
y

∑nm
y

k=1 |y − xk|, iii) the variance of this distance Dvar, with

respect to the average Davg, iv) the centroid offset vector ∆y = 1
nm
y

∑ny
x

k=1(xk − y) and v) a few principal
component (PCA) features of the covariance matrix of y − xk to calculate the local shape anisotropy. These
statistical descriptors, for each scale m and each point y ∈ D are then concatenated into a single vector
zy, normalized across components to yield zero mean and unit variance and fed into an MLP to provide
the embedding gm(y). Alternatively, geometry embedding using emphPointNet models [42] can also be
considered.

MAGNO. As shown in Fig. 2, the scale-dependent AGNO w̃m
e (4) and the geometry embedding gm, at

each scale m, can be concatenated together and passed through another MLP to yield a scale-specific latent
features function ŵm(y). Next, we need to integrate these features across all m scales. Instead of naively
summing these scale contributions, we observe that different scales might contribute differently for every
latent token to the encoding. To ascertain this relative contribution, we introduce a (small) MLP ψm and
weigh the relative contributions with a softmax and combine them into the multiscale attentional graph neural
operator or MAGNO encoder by setting,

we(y) =

m̄∑
m=1

βm(y)ŵm(y), ∀y ∈ D, βm(y) =
exp(ψm(y))

M∑
m′=1

exp(ψm′(y))

(6)

Transformer Processor. The encoder provides a set of geometry aware tokens we(yℓ), for all points
yℓ ∈ D, with 1 ≤ ℓ ≤ L, in the latent point cloud. These tokens are further transformed by a processor.
As shown in Fig. 2, we choose a suitable transformer based processor. While postponing details on the
processor architecture to SM Sec. B.4, we summarize our choices here. If the latent points {yℓ} lie on a
regular grid (either through a structured stencil or a projected low-dimensional one), we use a patch-based
vision transformer or ViT ([10] and [20, 38] for PDE operator learning) for computational efficiency. The
equispaced latent points are combined into patches and the tokens in each patch are flattened into a single
token embedding which serves as the input for a multi-head attention block, followed by a feed forward
block. RMS normalization is applied to the tokens before processing. Either sinusoidal absolute position
embeddings or rotary relative position embeddings are used to encode token positions. If the latent points yℓ
are randomly downsampled from the original point cloud, there is no obvious way to patch them together.
Hence, a standard transformer [49], but with RMS normalization, can be used. Additionally, we employ
multiple skip connections across transformer blocks (see Fig. 2). The transformer processor transforms the
tokens we(yℓ) into processed tokens, that we denote by wp(yℓ), for all 1 ≤ ℓ ≤ L.

Decoder. Given any query point x ∈ D in the original domain, the task of the decoder in GAOT is to
provide w(x), which approximates the solution u of the PDE (1) at that point. To this end, we simply employ
the MAGNO architecture in reverse. By choosing a base radius r̂0 and scale factors ŝm, a set of increasing
radii r̂m = ŝmr̂0 are selected to define a set of increasing balls Br̂m(x) around the query point x (Fig. 2). A
corresponding AGNO model is defined by replacing y → x, xk → yℓ and a→ wp in (4), with corresponding
attentional weights computed via (5). In parallel, geometry embeddings over each ball Br̂m(x) are computed
to provide statistical information about how the latent points yℓ are distributed in the neighborhood of the
query point x. These AGNO features and geometry embeddings are concatenated and passed through a MLP

5



to provide w(x) which has the desired dimensions of the solution u of the PDE (1). We denote the GAOT
model as Sθ with the output w = Sθ(a), for the inputs a to the PDE (1). It is trained to minimize the mismatch
the underlying operator S, i.e, the parameters θ are determined to minimize a loss L(S(a), Sθ(a)), over all
input samples ai, with L being either the absolute or mean-square errors.

Extension to time-dependent problems. To learn the solution operator St of the time-dependent PDE, we
observe that the St can be used to update the solution forward in time, given the solution at any time point u(t)
by applying u(t+ τ) = Sτ (u(t)). Thus, for any time t, given the augmented input a(t) = (c, u(t)), with c
being the coefficient in the PDE (2), we need GAOT to output u(t+ τ), for any τ ≥ 0. To this end, we retain
the architecture of GAOT, as described for the time-independent case above, and simply add the current time t
and the lead-time τ as further inputs to the model. More precisely, the time-dependent version of GAOT is of
the form Ŝθ(x, t, τ, a(t)), where a(t) takes values at points sampled in D. Following [39], the map Ŝθ can be
used to update an approximate solution of PDE (2) in time by following a very general time-stepping strategy:

Sθ(t, τ, a(t)) = γu(t) + δŜθ(x, t, τ, a(t)). (7)

Here, choosing the parameters (γ, δ) appropriately leads to different strategies for time stepping: γ = 0, δ = 1

directly approximates the output of the solution operator at time t + τ ; γ = 1, δ = 1 yields the residual
of the solution at the later time, with respect to the solution at current time; γ = 1, δ = τ is equivalent to
approximating the time-derivative of the solution. GAOT provides the flexibility to use any of these time-
stepping strategies. We also use the all2all training strategy [20] to leverage trajectory data for time-dependent
PDEs.

Efficient implementation. As our goal is to ensure accuracy and computational efficiency, we have designed
GAOT with ability for large-scale computations in mind. We started with the realization that the heaviest
burden of the computation should fall on the processor. The encoder and decoder are often responsible for
memory overheads as these modules entail sparse computations on graphs with far more edges than nodes,
making the computations largely edge-based and leading to high (and inefficient) memory usage. Moreover,
in many PDE learning tasks on arbitrary geometries, the underlying domain (and the resulting graph) varies
significantly between data samples, making load balancing very difficult.

To address these computational challenges, we resorted to i) moving the graph construction outside the model
evaluation by either storing the graph, representing the input point cloud, in memory for small graphs or on disk
for large graphs and loading them during training with efficient data loaders ii) sequentially processing each
input in a given batch for the encoder and decoder, while still batch processing in the transformer processor,
allowing us to reduce memory usage while retaining efficiency and iii) if needed for very large-scale datasets,
we use an edge-dropping strategy to further increase the memory usage of the encoder and decoder. These
innovations are essential to ensure batch training and underpin the efficiency of GAOT, even when input
geometries vary significantly.

3 Results.

Datasets and Baselines. We start by testing GAOT of a challenging suite of 15 datasets for PDEs with
input/output data on arbitrary point clouds in two space dimensions, see SM Secs D and G. for a detailed
description of the datasets and for visualizations, respectively. For time-independent PDEs, in addition to
the elasticity benchmark of [26], we consider two Poisson equation datasets: Poisson-Gauss, defined on
random points in a square domain, and Poisson-C-Sines, a new dataset we propose, containing rich multiscale
solutions on a circular domain. In addition, we propose 4 new datasets comprising compressible flows past
objects, both airfoils as well as bluff bodies. These datasets have significant variation in domain geometry and
flow conditions (Mach numbers ranging from subsonic to supersonic, varying angles of attack etc.) and are
tailor-made for testing neural PDE surrogates on arbitrary domains. For time-dependent PDEs, we test on the
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Table 1. Benchmark results on time-dependent and time-independent datasets. Best and 2nd best models are
shown in blue and orange fonts for each dataset.

Dataset Median relative L1 error [%]

Time-Independent GAOT RIGNO-18 Transolver GNOT UPT GINO

Poisson-C-Sines 3.10 6.83 77.3 100 100 20.0
Poisson-Gauss 0.83 2.26 2.02 88.9 48.4 7.57

Elasticity 1.34 4.31 4.92 10.4 12.6 4.38
NACA0012 6.81 5.30 8.69 6.89 16.1 9.01
NACA2412 6.66 6.72 8.51 8.82 17.9 9.39
RAE2822 6.61 5.06 4.82 7.15 16.1 8.61

Bluff-Body 2.25 5.76 1.78 44.2 5.81 3.49

Time-Dependent GAOT RIGNO-18 RIGNO-12 GeoFNO FNO DSE GINO

NS-Gauss 2.91 2.29 3.80 41.1 38.4 13.1
NS-PwC 1.50 1.58 2.03 26.0 56.7 5.85
NS-SL 1.21 1.28 1.91 13.7 22.6 4.48

NS-SVS 0.46 0.56 0.73 9.75 26.0 1.19
CE-Gauss 6.40 6.90 7.44 42.1 30.8 25.1

CE-RP 5.97 3.98 4.92 18.4 27.7 12.3
Wave-Layer 5.78 6.77 9.01 11.1 28.3 19.2

Wave-C-Sines 4.65 5.35 6.25 13.1 5.52 5.82

challenging datasets considered recently in [39], composed of 8 operators corresponding to the compressible
Euler (2), incompressible Navier-Stokes (4), and acoustic wave equations (2). These time-dependent operators
include complex multiscale solutions with shocks and other sharp traveling waves which can interact, reflect
and diffract making them hard to learn. We test GAOT on these datasets and compare them with several widely
used neural operators for PDEs on arbitrary domains including those based on message passing (RIGNO
[39]), Fourier Layers (GINO [29], GeoFNO [26], FNO DSE[31]) and Transformers (Transolver [50], UPT
[1] and GNOT [18]).

Accuracy and Robustness. In Table 1, we present the relative test errors for the above datasets to observe
that GAOT is very accurate on all of them, being either the best (10) or second-best (4) model on 14 of them.
On average, over the time-independent datasets, GAOT is almost 50% more accurate than the second-best
performing model (RIGNO-18) while on time-dependent datasets, it is slightly more accurate than the second-
best performing model (RIGNO-18). What is even more noteworthy is the robustness of the performance
of GAOT over all the datasets. As seen from Table 1, the accuracy of GAOT is uniformly good over all the
datasets and does not deteriorate on any of them. On the other hand, all the baselines show significantly poor
performance on outlier datasets. This robustness can be quantified in terms of a robustness score (see SM Sec.
E.1) to find that GAOT is almost three times more robust on the time-independent datasets as the second-best
model (RIGNO-18), while GAOT and RIGNO-18 are as robust as each other on the time-dependent datasets.

Computational Efficiency and Scalability. It is worth reiterating that the computational efficiency of an
ML model is a significant marker of overall performance. We test efficiency in terms of two critical quantities,
the training throughput and the inference latency. For a given input and model size, training throughput
measures the number of samples that a model can process during training (forward pass, backward pass and
gradient update) per unit time (second) on a given compute system (GPU or CPU). The higher the training
throughput, the faster the model can be trained. On the other hand, the inference latency is the amount of time
it takes for a model to infer a single input.
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Figure 3. Training throughput (samples/s) with increasing input grid size (a) and model size (b) for proposed
GAOT, GINO, RIGNO and Transolver. (c) Transfer learning performance of GAOT on unseen bluff body
shapes (See SM Sec. E.6 for dataset details). FT (fine-tuning) adapts a pretrained GAOT model from Table 1,
while TFS denotes training from scratch. FT consistently outperforms TFS across varying numbers of task-
specific training samples.

We present the throughput and latency for GAOT and three selected baselines (RIGNO-18 for Graph-based,
GINO for FNO-based and Transolver for Transformer-based models) in Table 2 for learning tasks (such
as the bluff-body dataset for compressible flow) where the domain geometry varies throughout the dataset.
These experiments are conducted on one NVIDIA-4090 GPU with float32 precision. We see from this table
that GAOT has the highest training throughput and the fastest inference latency, being almost 50% and 15%,
respectively better than the second-most efficient model (GINO).

Table 2. Comparison of model size (Params.),
throughtput (samples/s), and latency (ms) across
GAOT and representative baselines.

Model Params. (M) Tput. Latency

GAOT 5.62 97.5 6.966
GINO 6.04 60.4 8.455
RIGNO-18 2.69 50.3 12.74
Transolver 3.86 39.5 15.29

How the training throughput of a model scales with increas-
ing input and model size, is absolutely crucial for evaluating
whether it can be used to process large-scale datasets (input
scalability) or whether it can serve as a backbone of founda-
tion models (model scalability) which require large model sizes
[20]. To evaluate the scalability of different models, we plot
how the training throughput changes as input size and model
size (Fig. 3 (a, b)) are increased to find that GAOT scales much
more favorably than the baselines with respect to both input
and model size. In fact, models like Transolver and GNOT scale very poorly, making it impossible for us
to train them for the large-scale time-dependent datasets with all2all training, which requires handling large
volumes of data for large input sizes. Hence, we omit them in the accuracy results for time-dependent datasets
in Tab. 1. The results for both accuracy and efficiency across a range of metrics for GAOT, RIGNO, GINO
and Transolver are summarized in SM Tab. E.1 and visualized in the Radar chart Fig. 1 demonstrating that
GAOT ensures both accuracy (robustness) and computational efficiency (scalability) at the same time, while
being the best model performing model on both sets of metrics.

The DrivAerNet++ Dataset. Given the high accuracy and excellent computational efficiency and scal-
ability of GAOT, we showcase its abilities further on a challenging three-dimensional large-scale bench-
mark for industrial simulations, the DrivAerNet++ dataset of [12]. In this benchmark, the data consists
of high-fidelity CFD simulations across 8K different car shapes which span the entire range of conven-
tional car design. The underlying task is to learn steady-state surface fields (See Fig. 4) such as the
pressure and wall shear stress, given the input car shape and flow conditions. The underlying data has
approximately 500K points per shape, making the overall training extremely compute intensive. Thus,
only scalable models can currently process this learning task. We test GAOT on this challenging 3D
benchmark and report the RMSE and MAE test errors for the pressure and wall shear stress in Tab. 3.
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Figure 4. Comparison of predicted and ground-truth (GT) results for the pressure and wall shear stress in the
x-direction (WSS-x) on the DrivAerNet++ test sample N_S_WWS_WM_172.

Table 3. Error Metrics of MSE (×10−2) and Mean AE
(×10−1) for Pressure and Wall Shear Stress on the Dri-
vAerNet++ Dataset.

Model Pressure Wall Shear Stress

MSE Mean AE MSE Mean AE

GAOT 4.9409 1.1017 8.7370 1.5674
FIGConvNet 4.9900 1.2200 9.8600 2.2200

TripNet 5.1400 1.2500 9.5200 2.1500
RegDGCNN 8.2900 1.6100 13.8200 3.6400

GAOT (NeurField) 12.0786 1.7826 22.9160 2.5099

Compared to baselines results taken from the leader-
board of the DrivAerNet++ challenge [8], we see that
GAOT significantly improves on the state-of-the-art
(see also Fig. 4). This improvement is most visible in
the MAE for wall shear stress where GAOT is ca. 30%
more accurate than the second-best model (TripNet),
which currently sits atop the leaderboard. We recall
that GAOT’s decoder endows it with neural field prop-
erties. We showcase it for the DrivAerNet++ dataset
by training GAOT on a randomly selected set of less
than 10% of the total input points (per batch) and then testing on the original car surface point cloud by
querying the desired points through GAOT’s decoder. Although not as accurate as training GAOT with full
input, we observe from Tab. 3 that this neural field version of GAOT has comparable accuracy to some of
the baselines which have been trained with 10x more input points, further demonstrating the flexibility and
accuracy of GAOT.

Generality, Generalization and Scaling. We highlight GAOT’s flexibility with respect to the point dis-
tributions that it can handle by testing it on PDEs with regular grid inputs, as suggested in [39]. To this
end, we considered 7 additional datasets and present the test errors in SM Sec. E.3. to find that GAOT is
highly accurate even on regular grids and is either more accurate or comparable to the highly expressive
GNN-based RIGNO, while being more accurate than widely used neural operators such as FNO and CNO. A
key requirement in operator learning [22, 4] is the ability of the model to generalize (at test time) to input and
output resolutions that are different from the training resolution. As GAOT can be readily evaluated at any
query point, we showcase this aspect of GAOT in SM Sec. E.5. by plotting the test errors for a sequence
of resolutions, different from the training resolution, for the Poisson-Gauss benchmark, to find that GAOT
generalizes very well in both the sub- and super-resolution settings, even to grids with 10x more input points
than the training resolution. Another test of the generalizability of a model is its ability to perform well
out-of-distribution, either zero-shot or when it is fine-tuned with a few in-distribution samples for the new
learning task. To test this aspect, we consider the datasets for compressible flow past bluff bodies and train a
GAOT model on a set of bluff body shapes and then test it on shapes that were not in the training set. Then, the
model is fine-tuned with a few task-specific samples and the results are shown in Fig. 3 (c). We observe that
our model performs very well in a few-shot transfer learning scenario, with the fine-tuned model providing an
almost order of magnitude gain in accuracy over the model, trained from scratch. Finally, in SM Sec. E.4, we
demonstrate that GAOT scales with both model and dataset size, with scaling with respect to dataset size, also
illustrated in Fig. 3 (c).
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Ablations. Summarizing the extensive ablation studies of SM Sec.F, we observed that i) the MAGNO
encoder/decoder is clearly superior to message-passing based encoders/decoders, ii) choosing a regular
equispaced latent point cloud performs significantly better than either downsampling on the original point
cloud or using a projected low-dimensional regular grid, iii) a time-derivative marching strategy, i.e, setting
γ = 1, δ = τ in (7) is superior to other choices of γ, δ, iv) using a statistical geometric embedding performs
significantly better than either not using additional geometric information or using a pointnet to process
geometric information and v) incorporating multiscale features in the MAGNO encoder/decoder provides a
significant gain in accuracy when compared to using just a single scale GNO encoder/decoder as in GINO.
A posteriori, these observations justify the choices that we have made in designing GAOT and selecting the
relevant model components, while also revealing how these innovative features underpin GAOT’s overall
performance.

4 Discussion

Summary. We present GAOT, a new neural operator for learning PDE solutions on arbitrary domains. It
is based on a novel multiscale GNO encoder/decoder, combined with geometric embeddings that convey
statistical information about the local domain geometry, and a (vision) transformer based processor. The model
is designed to handle any point cloud input and provide the output at any query point in the underlying domain.
Several innovative strategies have been used to make the implementation of GAOT computationally efficient
and scalable. We test GAOT on a large number of challenging datasets for a variety of time-dependent and
time-independent PDEs over diverse two-dimensional domain geometries to find that GAOT is significantly
more accurate, robust and computationally efficient in terms of training throughput and inference latency, over
a large set of baselines. We further demonstrate the potential of GAOT by presenting its SOTA performance
on a large-scale three-dimensional dataset of industrial simulations. These results demonstrate that GAOT can
be a powerful and scalable neural operator with wide-spread applications.
Related Work. As discussed before, there are 3 broad classes of models for learning PDEs on arbitrary
domains namely i) end-to-end message-passing based frameworks exemplified here with RIGNO, which
significantly improves upon models such as (multiscale) MeshGraphNets [41, 15] ii) Transformer based
frameworks such as Transolver [50], GNOT [18] and UPT [1] and iii) frameworks, based on GNO en-
coders/decoders and FNO processors as in GINO [29]. GAOT differs from all these approaches by a) not
using graph-based message passing, b) only employing transformers in the processor c) using a transformer,
rather than FNO as a processor and significantly augmenting the GNO encoder/decoder by multiscale features,
attention based-quadrature and geometry embeddings. It is precisely these choices, along with a highly
efficient implementation, that allows GAOT to significantly surpass GINO, RIGNO, and Transsolver in both
accuracy and efficiency.
Limitations and Extensions. GAOT’s excellent scalability and ability to generalize very well in a transfer
learning setting (Fig. 3c) showcase its potential to serve as the backbone of foundation models for PDEs,
extending models such as Poseidon [20] and DPOT [17] to arbitrary domains. Further evaluation of GAOT,
beyond the DrivAerNet++ dataset, on three-dimensional datasets is also envisaged in future work. Physics-
informed loss functions can be added to GAOT to enable it to act as a physics-informed neural operator as
in [30]. We also plan to apply GAOT to downstream tasks such as UQ [34], inverse problems, [37] and
PDE constrained optimization [35] to further test its abilities. Finally, our main aim in this paper has been
to propose GAOT and test it empirically. We have not yet explored rigorous theoretical properties such as
universal approximation results [25, 23]. This limitation will also be addressed in future work.
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Supplementary Material for:
Geometry Aware Operator Transformer as an Efficient and Accurate Neural

Surrogate for PDEs on Arbitrary Domains

A Details of Problem Formulation.

Here, we introduce the core concepts of operator learning for both time-dependent and time-independent
partial differential equations (PDEs). We begin by defining the general forms of PDEs under consideration
and then discuss the associated operator-learning tasks.

A.1 General Forms of PDEs

We focus on two broad classes of PDEs: time-dependent and time-independent.

Time-Dependent PDE. Let D ⊂ Rd be a d-dimensional spatial domain, and let (0, T ) denote the time
interval. A general time-dependent PDE (see Main Text Eqn. (2)) can be written as

∂

∂t
u(t, x) + D

(
c, t, u, ∇xu, ∇2

xu, . . .
)
= 0, ∀(t, x) ∈ (0, T )×D,

B
(
u,∇xu,∇2

xu, . . .
)
= ub, ∀(t, x) ∈ (0, T )× ∂D,

u(0, x) = u0(x), ∀x ∈ D,

(A.1)

where

• u(t, x) is the PDE solution in (0, T )×D;

• c(t, x) is a known, possibly spatio-temporal parameter (e.g., a material coefficient or source term);

• D is a (spatial) differential operator;

• B is a boundary operator acting on ∂D;

• ub(x) are boundary values;

• u0(x) is the initial condition at t = 0.

We assume u(t, ·) ∈ X ⊂ Lp(D;Rm) for some 1 ≤ p <∞ and integer m ≥ 1. Likewise, u0(x) ∈ X 0 ⊂ X
is an element of the initial-condition space, and c ∈ Q ⊂ Lp(D;Rm) is taken from a parameter space.

Time-Independent PDE. A time-independent (steady-state) PDE of the general form (Main Text Eqn. (1))
can be written as

D
(
c, ū, ∇xū, ∇2

xū, . . .
)
= f, ∀x ∈ D,

B
(
ū, ∇xū, ∇2

xū, . . .
)
= ub, ∀x ∈ ∂D,

(A.2)

where ū(x) ∈ X and c(x) ∈ Q are now independent of t and f is a source term. In certain scenarios, one
may view (A.2) as the long-time limit of (A.1), i.e.,

ū(x) = lim
t→∞

u(t, x). (A.3)

Hence, much of the theory for time-dependent PDEs can be adapted to time-independent problems by
recognizing steady-state solutions as limiting cases.
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A.2 Solution Operators for PDEs

Let us denote the solution to the time-dependent PDE (A.1) by

u(t, ·) = S
(
a, c, t

)
, (A.4)

where S : X 0×Q×(0, T ) → X is the solution operator, mapping any initial datum u0 ∈ X 0 (and parameter
functions c ∈ Q) to the solution u(t) at time t.

Time-Shifted Operator. In many operator-learning strategies, it is useful to consider a time-shifted operator
that predicts solutions at a future time from a current snapshot. Specifically, define

S† : X ×Q× (0, T )× R+ −→ X ,

such that
S†(ut, ct, t, τ) = St

(
ut, ct, τ

)
= ut+τ . (A.5)

Here, ut = u(t, ·) is the solution snapshot at time t, which now serves as an initial condition on the restricted
time interval (t, T ). Likewise, ct is the corresponding parameter snapshot at time t.

Steady-State Operator. For the time-independent PDE (A.2), we define

S : Q −→ X (A.6)

to be the analogous solution operator, such that ū = S(c) solves the boundary-value problem for any
parameter/boundary data c. Although many operator-learning methods primarily focus on the time-dependent
form S, the same ideas apply to steady-state problems by treating ū as a limiting case.

Operator Learning Task (OLT). A central goal is to approximate these solution operators without repeat-
edly resorting to expensive, high-fidelity numerical solvers. Formally, the OLT can be stated as:

Given a data distribution µ ∈ Prob(X 0)×Q for initial/boundary conditions and parameters
c ∈ Q), learn an approximation S∗ ≈ S to the true solution operator S. That is, for any a ∼ µ,
we want S∗(t, a) to closely approximate u(t) for all t ∈ [0, T ]. For time-independent problems,
this goal changes accordingly to learning S∗ ≈ S .

A.3 Discretizations.

In practice, we only have access to a discretized form of the data as the labelled data is generated either
through experiments/observations or numerical simulations. In both cases, we can only evaluate the inputs
and outputs to the underlying solution operator at discrete points.

We start by describing these discretizations for the time-independent PDE (A.2). To this end, fix the i-th
sample and let D∆(i) = {x(i)j ∈ D(i)}, for 1 ≤ j ≤ J (i) denote a set of sampling points on the underlying
domain D(i). Observe that the underlying domain itself can be an input to the solution operator S of (A.2).
We assume access to the functions

(
c(i)(xj), f

(i)(xj), u
(i)(xj)

)
and the corresponding discretized boundary

values. Denoting these discretized inputs and outputs as a(i)
∆(i) (where a = (c, f, ub)) and u(i)

∆(i) , respectively,

the underlying learning task boils down to approximating S#µ from the discretized data-pairs
(
a
(i)

∆(i) , u
(i)

∆(i)

)
.

Note that although the data is given in a discretized form, we still require that our operator learning algorithm
can provide values of the output function u at any query point x ∈ D.

For the time-dependent PDE (A.1), in addition to the spatial discretization D∆(i) = {x(i)j ∈ D(i)}, for

1 ≤ j ≤ J (i), we only have access to data at time snapshots t(i)n ∈ [0, T (i)]. Thus, the data to the time-
dependent operator learning task consists of inputs (c(i)(xj), u

(i)
0 (xj)) and outputs u(x(i)j , t

(i)
n ), from which
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the space- and time-continuous solution operator St has to be learned at every query point x ∈ D and time
point t ∈ [0, T ].

Summarizing, for both time-independent and time-dependent PDEs, the operator learning task amounts to
approximating the underlying (space-time) continuous solution operators, given discretized data-pairs.

B Details of GAOT Architecture

This appendix provides a detailed explanation of the core components of the GAOT model architecture,
including the choice of latent token grid, the Multiscale Attentional Graph Neural Operator (MAGNO) used
in the encoder and decoder, the geometry embedding mechanisms, and the transformer-based processor.

B.1 Choice of Latent Grid

Given the input point cloud, denoted by D∆ above, the first step in our design is to select a latent point cloud,
consisting of points at which our spatial tokens are going to be specified. Here, we explore three distinct
ways of choosing spatial tokens, each offering different trade-offs in terms of computational cost, geometric
coverage, and ease of patching for efficient attention. Figure B.1 schematically illustrates these strategies.

(a) Strategy I (b) Strategy II

x

y

(c) Strategy III

Figure B.1. Schematic illustration of the three tokenization strategies in a 2D domain. Blue points and
red circles corresponding to physical grid and latent token grid, respectively. (a) A structured stencil grid
overlaying the domain. (b) Downsampled unstructured points used directly as tokens. (c) Projecting the 2D
domain onto low-dimensional planes.

Structured Stencil Grid (Strategy I). In this approach, we overlay a structured grid of tokens across D∆.
For 2D domains, this may be a uniform mesh of cells; for 3D domains, an analogous dense grid can be used.
GINO [29] is a good example for the use of such latent grids.

• Advantages. This grid can be quite fine if needed, ensuring adequate coverage. Moreover, we can group
tokens into patches before feeding them into the transformer processor (see below), effectively reducing
the token count (number of latent points). Our following experiments in SM Sec. F.2 suggest that patch
size has a negligible effect on performance; hence, one can choose large patches to speed up training.

• Limitations. The main drawback is that token count grows exponentially with the dimension; for 3D,
the number of grid cells can be prohibitively large. Also, if the input data lie on a low-dimensional
manifold embedded in D∆, some tokens may remain underutilized. Nonetheless, we find in practice
that even empty tokens (those with no neighboring input points) can still contribute to better global
encoding and improved convergence.

Downsampled Unstructured Points (Strategy II). This method directly downsamples the input unstruc-
tured point cloud and treat each sampled point as a token, RIGNO [39] and UPT [1] are typical methods based
on this strategy. If the data are denser in some regions, naturally more tokens appear there.

17



• Advantages. This method avoids the pitfalls of having many tokens in empty regions, as might happen
if the data indeed lie on a lower-dimensional manifold. By adaptive sampling, it can allocate tokens
more efficiently.

• Limitations. Unstructured tokens are harder to patch effectively for attention mechanisms in the
processor. In a following experiment, we observed that this strategy can be less effective than Strategy I
even when the domain is indeed partially low-dimensional.

Projected Low-Dimensional Grid (Strategy III). Inspired by certain 3D computer vision models [7, 21],
one can project the 3D domain (or higher-dimensional space) into a lower-dimensional representation and
then place a structured stencil grid in the reduced coordinates—for example, using triplane embeddings in
3D [8].

• Advantages. Such a projection drastically reduces the token count in 3D, and avoids the purely
low-dimensional manifold disadvantage of Strategy I. Moreover, one can still apply patching on the
structured plane.

• Limitations. Decomposing d-dimensional coordinates into disjoint projections (e.g., splitting x, y, z
axes) can introduce additional approximation errors. Some local neighborhood information is inevitably
lost during the projection. This trade-off can degrade the final accuracy compared to direct methods
(Strategy I or II).

In this paper, we mainly adopt Strategy I, i.e. a structured stencil grid, for all experiments due to its robustness
and simplicity. While using a stencil grid indeed creates some empty tokens in low-density regions, we
consistently observe fast convergence and strong generalization across various PDE datasets, see the ablation
studies in SM Sec. F.2.

B.2 Multiscale Attentional Graph Neural Operator

Both the encoder and decoder in GAOT (see Figure 2 in the main text) employ the proposed Multiscale
Attentional Graph Neural Operator (MAGNO). MAGNO is designed to augment classical Graph Neural
Operators (GNOs) by incorporating multiscale information processing and attention-based weighting. A
traditional GNO constructs a local graph for each query point (or token) by collecting all neighboring nodes
within a specified radius, approximating a (kernel) integral operator over this local neighborhood. Below, we
first recap the standard single-scale GNO scheme, then extend it to a multiscale version, and finally incorporate
attention mechanisms for adaptive weighting.

Recap of Single-Scale Local Integration (GNO Basis) For any point y in the latent space D (in the
encoder) or a query point x in the original domain D∆ (in the decoder), a GNO layer aims to aggregate
information from its neighborhood via a kernel integral. For the encoder, given input data a(xj) on the
original point cloud D∆ = {xj}, the GNO transforms it into latent features we(y). The fundamental GNO
computation is given by Eq. (3) from the main text:

w̃e(y) =

ny∑
k=1

αkK(y, xk, a(xk))φ(a(xk)) (B.1)

where the sum is over ny points xk in the original point cloud D∆ such that |y − xk| ≤ r. K and φ are
MLPs, a(xk) is the input feature at point xk, and αk are given quadrature weights. This form can be seen as a
discrete approximation of an integral operator:ˆ

Br(y)∩D∆

K
(
y, x′, a(x′)

)
φ
(
a(x′)

)
dx′ (B.2)

where Br(y) is a ball of radius r centered at y.
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Multiscale Neighborhood Construction The single-scale approach, while effective for capturing local
interactions within a fixed radius r, may not efficiently perceive multiscale information crucial for many PDE
problems. To address this, we introduce multiple radii. As described in the main text, we choose rm = smr0,
where r0 is a base radius and sm are scale factors (m = 1, . . . , m̄). For each scale m, we gather points xk
from the original point cloud D∆ within the ball Brm(y) centered at y ∈ D (for the encoder) with radius rm.
A GNO-like local integration is then performed for each scale m, as shown in Eq. (4) from the main text:

w̃m
e (y) =

nm
y∑

k=1

αm
k K

m(y, xk, a(xk))φ(a(xk)) (B.3)

Here, nmy is the number of neighbors xk within radius rm. The MLPs Km and φ can be scale-specific or
share parameters across scales. This paper chooses the shared parameters across all scales.

B.2.1 Attentional Weighting in Local Integration (AGNO)

In the main text, we further propose an attention-based choice for the quadrature weights αm
k , as given by

Eq. (5):

αm
k =

exp(emk )
nm
y∑

k′=1

exp(emk′)

, emk =
⟨Wm

q y,W
m
κ xk⟩√

d̄
(B.4)

where Wm
q ,W

m
κ ∈ Rd̄×d (assuming original and latent coordinate dimension d, and attention dimension d̄)

are learnable query and key matrices. This mechanism allows the model to dynamically assign contribution
weights to each neighbor xk based on the relationship between y and xk. This forms the final form of our
Attentional Graph Neural Operator or AGNO at each scale m.

B.2.2 Attentional Fusion of Multiscale Features

After computing the AGNO features w̃m
e (y) for each scale (which are then fused with geometry embeddings,

detailed in Sec. B.3, to form ŵm(y)), we need to integrate this information from different scales. As described
in the main text (Fig. 2 and Eq. (6)), instead of simple summation or concatenation, we introduce a small
MLP ψm to learn the relative contribution of each scale to the final encoded feature we(y):

we(y) =

m̄∑
m=1

βm(y)ŵm(y), βm(y) =
exp(ψm(y))

m̄∑
m′=1

exp(ψm′(y))

(B.5)

Here, ψm(y) is typically computed based on coordinates of y. βm(y) is the attention weight for the m-th
scale at point y.

The final output of the MAGNO encoder, we(y), is thus a feature representation that adaptively weights and
fuses multiscale local information with attention mechanisms. The MAGNO in the decoder follows the exact
same structure, with different inputs, outputs, and operating objects, as described in the Main Text.

B.3 Geometry Embeddings

While the Multiscale Attentional GNO already leverages geometric structure via local neighborhoods, one
often needs to incorporate more explicit shape or domain information in practical PDE scenarios. For instance,
when the geometry of the domain itself (e.g., the shape of an airfoil) plays a critical role in the solution
operator, coordinates alone may be insufficient to encode all the necessary geometric priors. Therefore, we
introduce geometry embeddings to enhance the model’s geometric awareness. These embeddings work in
tandem with the MAGNO encoder (and decoder), providing a rich geometric description for each token (latent
point y) and its neighborhood at various scales m.
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Prior work on including geometric information in neural PDE solvers typically resorts to two major approaches:
(i) appending geometry features directly into node/edge attributes [39], or (ii) using a signed distance function
(SDF) [29]. However, we argue that:

• Simply merging geometry and physical features at the node level may entangle them prematurely,
potentially hurting performance when the geometry is complex or when additional modalities (e.g.
material properties) must be fused.

• Computing SDF to represent geometry is often cumbersome, especially for unstructured datasets or
when the boundary is only partially known. Each new shape would require re-computation, and the
SDF values may be inaccurate if the surface is not well-defined.

Instead, we advocate two more direct and flexible mechanisms for extracting geometric descriptors: local
Statistical embedding and PointNet-based embedding, shown in Figure B.2.
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Figure B.2. Schematic of the Geometric Embedding for Statistical Embedding (a) and PointNet-based
Embedding (b). LC denotes the lifting channels for MAGNO output.

Local Statistical Embedding The core idea is to extract statistical descriptors from the neighborhood
Brm(y) (or Br̂m(x) for the decoder) of original point cloud points xk (or latent points yℓ for the decoder) for
each latent point y (for the encoder) or query point x (for the decoder) at each scale m. Taking the encoder as
an example, for a latent point y ∈ D and scale m, its neighborhood is Nm(y) = {xk ∈ D∆ : |y−xk| ≤ rm},
containing nmy points. We compute the following statistics:

• Number of Neighbors nmy : Measures local density around point y.

• Average Distance Dm
avg(y):

Dm
avg(y) =

1

nmy

nm
y∑

k=1

|y − xk| (B.6)

Describes the average spatial extent of the neighborhood.

• Distance Variance Dm
var(y):

Dm
var(y) =

1

nmy

nm
y∑

k=1

(|y − xk| −Dm
avg(y))

2 (B.7)

Reflects the dispersion of points within the neighborhood.

• Neighbor Centroid Offset Vector ∆m
y :

∆m
y =

 1

nmy

nm
y∑

k=1

xk

− y (B.8)

The vector from y to the centroid of its neighbors xk.
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• PCA Features: These features aim to capture the local shape anisotropy of the distribution of the nmy
neighbor points {xk} within the m-th scale ball Brm(y). This is achieved by performing PCA on the

set of these neighbor coordinates {xk}. Using the centroid of the neighbors x̄mnbrs,y =
(

1
nm
y

∑nm
y

k=1 xk

)
,

the d× d covariance matrix of the neighbor coordinates is calculated as:

Cm
y =

1

nmy

nm
y∑

k=1

(xk − x̄mnbrs,y)(xk − x̄mnbrs,y)
⊤ (B.9)

If nmy = 0 (or too few points for a meaningful covariance, e.g. nmy < d), the covariance matrix Cm
y is

treated as a zero matrix, leading to zero eigenvalues. Otherwise, the d real eigenvalues of this symmetric,
positive semi-definite covariance matrix, sorted in descending order (λm1 ≥ λm2 ≥ · · · ≥ λmd ≥ 0),
are used as the PCA features. These eigenvalues represent the variance of the neighbor data along
the principal component directions, thus describing the extent and orientation of the local point cloud
cluster.

These statistical descriptors, computed for each scale m and each point y ∈ D, are concatenated into a vector
zmy , normalized (e.g., to have zero mean and unit variance for each component), and then fed into an MLP to
yield the geometry embedding gm(y) for that scale:

gm(y) = MLPgeo(Normalize(zmy )) (B.10)

This MLPgeo is typically shared across all points and scales.

Point-Based Embedding As an alternative, we can train a PointNet-style network [43] to derive a compact
geometric descriptor from each token’s neighborhood. Classical PointNet architectures typically include:

• Input Transformer: aligns input points to a canonical space (optional),

• Shared MLP: processes each point individually,

• Symmetric Pooling: aggregates per-point features into a global descriptor, ensuring permutation
invariance.

In our PDE setting, we do not necessarily need an input transformer; the local coordinates can directly
serve as input features. We replace the typical max-pooling with mean-pooling to produce smoother local
embeddings (though other pooling strategies are also possible). For a point y and scale m, we collect the
relative coordinates of its neighbors {δmk = xk − y}n

m
y

k=1. These relative coordinates are fed into a shared
MLP (point-wise MLP):

hmk = MLPpt(δ
m
k ) (B.11)

Then, a symmetric pooling operation (e.g., mean pooling or max pooling) aggregates these per-point features
into a global geometric feature:

h̄m(y) = MeanPool({hmk }n
m
y

k=1) =
1

nmy

nm
y∑

k=1

hmk (B.12)

This aggregated feature h̄m(y) can optionally be passed through another small MLP to produce the final
geometry embedding gm(y).

B.3.1 Integration of Geometry Embeddings in MAGNO

As depicted in Fig. 2 of the main text and described in the MAGNO paragraph, in the MAGNO component of
the encoder (or decoder), the geometry embedding is fused with the AGNO output at each scale. The specific
workflow (for the encoder) is as follows:
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1. Scale-Specific AGNO Features: For latent point y and scale m, compute the AGNO output w̃m
e (y) (as

described in Sec. B.2.1).

2. Scale-Specific Geometry Embedding: In parallel, using methods from Sec. B.3, compute the geometry
embedding gm(y) from the same neighborhood Nm(y).

3. Feature Fusion: Concatenate the AGNO features w̃m
e (y) and the geometry embedding gm(y), and

pass them through an MLP for fusion, yielding the scale-specific latent feature function ŵm(y):

ŵm(y) = MLPm
fuse([w̃

m
e (y) ∥ gm(y)]) (B.13)

where ∥ denotes concatenation. And MLPm
fuse is shared across scales.

4. Multiscale Aggregation: Finally, as described in Sec. B.2.2, an attention mechanism is used to perform
a weighted sum of the fused features {ŵm(y)}m̄m=1 from all scales, yielding the final encoder output
we(y) (Eq. (B.5)).

Compared to merging geometry and PDE features at the node level before any operator updates, this per-scale
integration offers several benefits:

• Scale-Adapted Geometry. Each scale has a correspondingly sized neighborhood, allowing the geometric
embedding to reflect local shape details at the appropriate radius. Small radii capture fine-grained features
(e.g. sharp corners), while large radii convey coarse global context.

• Modular Flexibility. Both MAGNO and Geometric Embeddings act as distinct modules. One can upgrade
either component (e.g. adopting a more customized local aggregator or geometry encoder) without changing
the overall pipeline.

• Unified Per-Token Fusion. The final aggregated feature we(y) collects information from all relevant scales
and from geometric descriptors, leading to a richer token representation. This is particularly advantageous
in settings with complex boundaries (e.g. airfoils, porous media) where multiple length scales and shape
cues matter.

This design preserves the encode-process-decode philosophy: each token gains geometry-aware, multiscale
PDE features during the encoder stage, facilitating global attention and final decoding later in the pipeline.

B.4 Processor

After constructing geometry-aware tokens, we employ a Transformer-based processor to enable global
message passing among all tokens. Depending on the chosen tokenization strategy (SM B.1), we can choose
the following strategies, respectively:

• Regular Grid (Strategy I or III): If the latent points {yℓ ∈ D} lie on a regular grid (e.g., via a structured
stencil or a projected low-dimensional regular grid), we adopt a strategy similar to vision transformers
(ViTs) [10]. The latent points are grouped into non-overlapping "patches." All token features we(y)

within each patch are flattened and linearly projected into a single patch token embedding. These patch
tokens then serve as the input sequence to the Transformer.

• Randomly Downsampled Points (Strategy II): If the latent points {yℓ} are randomly downsampled
from the original point cloud D∆, they lack a regular grid structure. In this case, there is no obvious
"patching" method, and each latent token we(yℓ) directly serves as an element in the Transformer’s
input sequence.
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Positional Encoding Transformers themselves are permutation-invariant and do not inherently process
sequential order or spatial position. Thus, positional information must be injected. In GAOT, we use the
Relative Positional Embeddings (RoPE) [48], which is a method that integrates relative positional information
directly into the self-attention mechanism. It achieves this by applying rotations, dependent on their relative
positions, to the Query and Key vectors. This has shown strong performance in many Transformer models.

Transformer Block Structure For the transformer Blocks, we adopt an RMS norm RMSNorm(·) at the
beginning of attention and feedforward layers:

z = RMSNorm
(
x
)
, RMSNorm(x) =

x√
mean(x2)

⊙ α (B.14)

where α is a learned scaling parameter. This approach is akin to LayerNorm but uses the root mean square of
feature magnitudes rather than computing mean-and-variance separately. This prenorm design helps stabilize
the gradient flow compared to the conventions in [49]. Each block has the structure,

Zattn = X + MultiHeadAttn
(
RMSNorm(X)

)
, Zffn = Zattn + FFN

(
RMSNorm(Zattn)

)
.

(B.15)
Furthermore, we use Group Query and Flash Attention in the code for efficient multi-head self-attention.

Long-Range Skip Connections In addition to the intra-block residual connections, we also introduce
long-range skip connections across multiple Transformer blocks, as suggested in works like [3]. For instance,
the Transformer blocks can be divided into an earlier part and a later part, and layers can be symmetrically
connected (e.g., the first with the last, the second with the second-to-last, etc.), allowing later blocks to directly
receive information from earlier blocks, further improving information flow.

By stacking these blocks, the Transformer processor learns complex global dependencies among tokens,
transforming the locally geometry-aware tokens we(yℓ) from the encoder into processed tokens wp(yℓ) that
incorporate richer contextual information. These processed tokens are then converted by the MAGNO decoder
to the desired approximation of the output of the underlying solution operator (see Main Text and Fig. 2).

B.5 Training Details.

This section discusses the details of how the GAOT models were trained, including the loss functions,
data normalization procedures, general training hyperparameters, and default model configurations. In our
experiments, we address both time-independent and time-dependent PDEs. The application of GAOT to
time-independent PDEs is straightforward. For time-dependent PDEs, we employ three different time-stepping
methods and all2all training [20], as discussed in the main text. More details on these methods can be found
in [39].

B.5.1 Loss Function

The loss function used for training GAOT is the Mean Squared Error (MSE), computed between the model’s
final predictions and the true physical quantities. For a set of Ns samples and Np spatial points, the loss is:

LMSE =
1

NsNp

Ns∑
i=1

Np∑
j=1

∥Sθ(·)i(xj)− utrue,i(xj)∥22 (B.16)

where Sθ(·)i(xj) is the model’s prediction for sample i at point xj , and utrue,i(xj) is the corresponding
ground truth. The exact form of Sθ(·) depends on whether the problem is time-independent or time-dependent.
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Time-Independent PDEs. For time-independent PDEs, given an input a(xj) (e.g., boundary conditions,
coefficients c), GAOT directly predicts the solution u(xj). Thus, Sθ(a)(xj) is the direct output of the GAOT
architecture, and the MSE loss is computed between Sθ(a)(xj) and the true steady-state solution utrue(xj) of
PDE (A.2).

Time-Dependent PDEs. To learn the solution operator for time-dependent PDEs, GAOT is used to update
the solution forward in time. Given the solution u(t) at time t and coefficients c (forming the augmented
input a(t) = (c, u(t))), the model predicts the solution at t+ τ . The GAOT architecture produces an output
Ŝθ(x, t, τ, a(t)). The final prediction for u(t + τ), denoted Sθ(t, τ, a(t)), is constructed using a general
time-stepping strategy as per Eq. (7) from the main text, see also [39]:

Sθ(t, τ, a(t)) = γu(t) + δŜθ(x, t, τ, a(t)) (B.17)

The MSE loss is then computed between this Sθ(t, τ, a(t)) and the true solution utrue(t+ τ). The choice of
parameters (γ, δ) determines the time-stepping strategy and what the network output Ŝθ effectively learns:

• Output Stepping (γ = 0, δ = 1): The final prediction is Sθ(t, τ, a(t)) = Ŝθ(x, t, τ, a(t)). The network
output Ŝθ directly learns to approximate u(t+ τ).

• Residual Stepping (γ = 1, δ = 1): The final prediction is Sθ(t, τ, a(t)) = u(t) + Ŝθ(x, t, τ, a(t)).
The network output Ŝθ learns to approximate the residual, u(t+ τ)− u(t).

• Time-Derivative Stepping (γ = 1, δ = τ): The final prediction is Sθ(t, τ, a(t)) = u(t) + τ ·
Ŝθ(x, t, τ, a(t)). The network output Ŝθ learns to approximate the time-derivative, (u(t+ τ)− u(t))/τ .

GAOT offers the flexibility to use any of these strategies. A detailed ablation of their comparative performance
is described in SM Sec. F.

B.5.2 Data Normalization

Data normalization is applied to stabilize training. We typically use Z-score normalization, where for a
quantity X , its normalized version X̂ is (X − µX)/σX . The mean µX and standard deviation σX are
computed over the training dataset.

Time-Independent PDEs. For input features a(xj) and output solution fields u(xj), normalization parame-
ters are computed across all samples and spatial points in the training set for each channel independently. The
model is trained on normalized inputs to predict normalized outputs.

Time-Dependent PDEs. The input u(t) is normalized using its global mean and standard deviation com-
puted over all time steps and samples in the training set. The normalization of the target for the network
output Ŝθ(x, t, τ, a(t)) depends on the chosen time-stepping strategy, as Ŝθ learns a different physical quantity
in each case:

• Output Stepping: The network Ŝθ aims to predict u(t + τ). Thus, the ground truth values u(t + τ) are
normalized, and Ŝθ is trained to predict these normalized values. Statistics µu and σu are computed from
all values u(t′) in the training set. The normalized target for Ŝθ is û(t+ τ) = (u(t+ τ)− µu)/σu.

• Residual Stepping: The network Ŝθ aims to predict the residual R(t, τ) = u(t+ τ)− u(t). Thus, these true
residual values are computed from the training data, and their statistics (µR, σR) are used for normalization.
The normalized target for Ŝθ is R̂(t, τ) = (R(t, τ)− µR)/σR.
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• Time-Derivative Stepping: The network Ŝθ aims to predict the time-derivativeD(t, τ) = (u(t+τ)−u(t))/τ .
These true derivative values are computed, and their statistics (µD, σD) are used for normalization. The
normalized target for Ŝθ is D̂(t, τ) = (D(t, τ)− µD)/σD.

Time t and lead-time τ inputs are also typically scaled or normalized. Further details on these normalizations
can be found in [39].

B.5.3 General Training Setup

This section provides an overview of our training hyperparameters. Unless otherwise noted, all experiments
follow these settings. Table B.1 summarizes the primary hyperparameters and training schedules. In particular,
we distinguish between time-dependent and time-independent PDE tasks in terms of epoch count, and
highlight the differences in hardware usage for the DrivAerNet++ dataset. All models except DrivAerNet++
run on a single GeForce RTX 4090 GPU. For the DrivAerNet++ dataset, we use 4 GeForce A100 (40GB)
GPUs in data parallel mode, and each GPU holds a batch size of 1. For the scheduler, we warm up to mitigate
instability at early epochs, then adopt a cosine schedule for gradual decay, and finalize with a step-based drop
for fine-tuning the last epoch range.

Table B.1. Key training hyperparameters and schedulers used for all models, unless otherwise specified.

Hardware • Single-GPU: All models (except DrivaerNet++) are trained on a
single GeForce RTX 4090 with batch size = 64.

• Four-GPU: For the DrivaerNet++ dataset, we use four GeForce A100
(40GB) GPUs, each with batch size = 1.

Optimizer • Algorithm: AdamW

• Weight Decay: 1× 10−5

Epochs • Time-Dependent PDEs: 500 epochs

• Time-Independent PDEs: 1000 epochs except the DrivaerNet++
dataset, which is trained on 200 epochs.

Learning Rate Scheduler • Warmup (first 10% epochs): LR increases linearly from 8× 10−4 to
1× 10−3.

• Cosine Decay (next 85% epochs): LR decays from 1 × 10−3 to
1× 10−4.

• StepLR (final 5% epochs): LR drops from 1× 10−4 to 5× 10−5.

B.5.4 GAOT Model Configuration

Table B.2 outlines the default configuration of our GAOT framework. This includes the MAGNO used in
both the encoder and decoder stages, as well as the Transformer-based global processor. MAGNO converts
node features into geometry-aware tokens (encoder) and reconstructs continuous fields (decoder). By default,
the coordinates will be rescaled in the domain [−1, 1]d, and we use a single aggregation radius 0.033 for
adequate coverage. If multiscale is enabled, we adopt radii {0.022, 0.033, 0.044}. The default geometric
embedding method is local Statistical Embedding (e.g. as SM Sec. B.3), and will typically be implemented
for unstructured datasets. The Transformer processes geometry-aware tokens globally via multi-head self-
attention. We set the hidden dimension to 256 with a 1024-dim feed-forward layer, residual connections,
RMSNorm, and RoPE for positional embeddings. By adjusting the patch size and the number of tokens, we
can trade off computational cost and model resolution.
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Table B.2. Default architectural hyperparameters for GAOT.

Abbreviation Default Value Description

MAGNO (Encoder / Decoder)

PJC 256 Dimensionality for MAGNO’s internal hidden layers.
ENC-MLP [64, 64, 64] Hidden layers of the encoder MLP in MAGNO.
DEC-MLP [64, 64] Hidden layers of the decoder MLP in MAGNO.

LC 32 Output/Lifting channels after MAGNO (both encoder and decoder).
TS I Tokenization Strategy I.
NT [64, 64] Number of tokens for Strategy I (e.g., a 64× 64 stencil grid).
GR 0.033 Aggregation radius (single-scale) for every token. If multiscale:

{0.022, 0.033, 0.044}.
GeoEmb statistical Geometric Embedding for the encoder and decoder.

EM 0.3 Edge masking ratio for the MAGNO, used for 3D drivaernet++ dataset.

Transformer

PS 2 Default patch size for token grouping if Strategy I or III is used.
Norm RMSNorm Normalization used in attention and MLP layers. Pre-norm configuration.

PE RoPE Positional embedding used in the Transformer. Rotary positional embed-
dings.

RES-CON True Residual connections between transformer blocks.
TL 5 Number of Transformer blocks.

THS 256 Hidden dimension per self-attention block.
HEAD 8 Number of attention heads.

Dropout 0.2 Dropout ratio in the attention module.
FFN 1024 4× hidden size (THS) for the feedforward layer.

B.6 Inference

When predicting solutions for time-independent PDEs, we simply feed the input parameters a (e.g. boundary
conditions, coefficients, or geometric shape) into our learned operator Sθ(a) and obtain the steady-state
output u(x) directly. However, for time-dependent PDEs, there are two different strategies for forecasting the
solution at a future time, using the learned one-step advancement operator Sθ(t, τ, a(t)) which, as defined in
Eq. (B.17), takes the current time t, a lead-time τ , and the augmented input a(t) = (c, u(t)) to predict the
solution at t+ τ . The two main inference strategies are direct inference and autoregressive inference.

Direct Inference (DR) Recall from the main text that our learned operator Sθ takes the lead-time τ as
an explicit input, allowing for predictions over variable time steps. Given a snapshot of the solution u(tn)
(which is part of a(tn)), the network can directly predict the solution at any later time tn + τtarget, up to a
maximum trained horizon tmax, by evaluating Sθ(tn, τtarget, a(tn)). Hence, for each possible time increment
τtarget = k · ∆t (where ∆t is a base time step in the dataset, and 1 ≤ k ≤ kmax), we can produce the
model’s estimate u(tn + τtarget) from u(tn) in a single step, without iterating through intermediate time
steps. Concretely, if our dataset is discretized at times Ω∆

t = { t0, t1, . . . , tN}, we can directly evaluate
Sθ(tn, τtarget, a(tn)) for various τtarget values originating from any tn ∈ Ω∆

t . This provides a sequence of
direct predictions at each possible time offset τtarget from any initial time tn.

Autoregressive Inference (AR) While direct inference estimates the solution at a single future time, an
alternative is to iterate the operator in multiple, typically smaller, sub-steps to reach the final time. This
approach is called autoregressive (AR) inference. Formally, given an initial snapshot u(t0), we repeatedly
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apply the learned operator Sθ with a chosen fixed time increment for each step, ∆tAR, to advance the solution:

u(tk+1) = Sθ(tk,∆tAR, a(tk)) (B.18)

where tk+1 = tk +∆tAR, and a(tk) = (c, u(tk)) uses the solution u(tk) from the previous step (or the initial
condition if k = 0). This process is repeated until the desired final time tfinal is reached.

We examine two types of autoregressive step sizes in our experiments:

• AR-2: Use an autoregressive time increment of ∆tAR = 2 (assuming time units are consistent with
the dataset). Starting from u(t0), we compute u(t0 + 2) = Sθ(t0, 2, a(t0)). Then, using u(t0 + 2), we
compute u(t0 + 4) = Sθ(t0 + 2, 2, a(t0 + 2)), and so on, up to t14. In total, we perform 7 consecutive
evaluations of Sθ.

• AR-4: Use an autoregressive time increment of ∆tAR = 4. In this scenario, we predict u(t0 + 4) =

Sθ(t0, 4, a(t0)), then from u(t0 + 4), u(t0 + 8) = Sθ(t0 + 4, 4, a(t0 + 4)), and so on, eventually
reaching t14 in just 4 iterations (assuming t0 = 0 and tfinal = 16 for this example, or if t14 is the target
after some steps).

Generally, the choice of the AR step size ∆tAR is flexible. One could select any valid ∆tAR ≤ τmax (where
τmax is the maximum lead-time the model was reliably trained for in a single step) at each sub-step. Note that
using fewer, larger time steps (e.g., ∆tAR = 4) can reduce computational cost but potentially compounds
prediction errors more quickly if the operator Sθ is less accurate for larger single-step lead-times. Conversely,
smaller increments (e.g. ∆tAR = 2) tend to accumulate errors more gradually but require more iterations
(and thus more computation) to reach the final time. Details can be found in [20, 39].

C Baselines

For the time-dependent benchmarks (including those on unstructured grids detailed in Table 1 and regular
grids in Table E.2, the corresponding baseline results are primarily obtained from the work by [39]. These
baseline models include RIGNO-12, RIGNO-18, CNO, scOT, FNO, GeoFNO, FNO DSE, and GINO. For
further details on these methods, please refer to the paper [39]. In this work, we have additionally included
three more recent models for a comprehensive comparison: Transolver [50], GNOT [18], and UPT [1]. Brief
descriptions of these newly added models and the specific hyperparameters adopted in our experiments are
provided below.

C.1 UPT

Universal Physics Transformers (UPT) [1] form a neural-operator framework that fits into the canonical
encode–process–decode pipeline:

U = D ◦ A ◦ E , (C.1)

where E (Encoder) compresses k input points—coming from an arbitrary Eulerian mesh or Lagrangian particle
cloud—into a fixed set of nlatent tokens. It first embeds the features and coordinates through a radius-graph
message-passing layer that aggregates information into ns supernodes, and finally employs transformer and
perceiver pooling blocks to obtain the latent representation zt ∈ Rnlatent×h .

A (Approximator) is a stack of transformer blocks that advances the latent state in time, A : zt 7→ zt+∆t,

enabling fast latent roll-outs without repeatedly decoding to the spatial domain.

D (Decoder) is a Perceiver-style cross-attention module that evaluates the latent field at any set of query
positions {yi}k

′

i=1, yielding ut+∆t(yi) = D(zt+∆t, yi) with O(nlatent) complexity independent of k′.

In the setting of time-independent problems, we bypass the latent roll-out stage, and adopt a lightweight
configuration in our experiments. Specifically, we use latent tokens = 64 and embedding dimensions = 64,
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which results in a model size of 0.74M . A large variant with 256 latent tokens and 192 embedding dimension
as setup in [1] was found to suffer from optimization difficulties and was not adopted in our baseline results.
The same optimizer setup as GAOT is used here.

Considered Hyperparameters

Architecture

Trainable parameters 0.74M

Number of supernodes ns 2048

Radius for message passing 0.033

Embedding (feature) channels 64

Encoder transformer blocks 4

Encoder attention heads 4

Latent tokens nlatent 64

Latent dimension h 64

Approximator transformer blocks 4

Approximator attention heads 4

Decoder attention heads 4

Training

Optimizer AdamW

Scheduler same as in B.2

Initial learning rate 1 · 10−3

Weight decay 10−5

Number of epochs 500

Batch size 64

C.2 Transolver

Transolver [50] is a transformer-based operator learning model designed for PDEs on unstructured grids. It
follows an encode-process-decode paradigm by stacking multiple Transolver blocks. The core of each block
is the Physics-Attention mechanism.

Given input features Xphys ∈ RN×C for N mesh points:

1. Encoding to Tokens: First, for each mesh point feature xi ∈ Xphys, M slice weights wi ∈ R1×M are
learned, typically via a projection followed by a Softmax function: wi = Softmax(Project(xi)). These
weights determine the assignment of mesh points to M learnable "slices". The j-th physics-aware
token zj ∈ R1×C is then encoded by a weighted aggregation of all mesh point features, using the slice
weights:

zj =

∑N
i=1 wi,jxi∑N
i=1 wi,j

(C.2)

This results in M tokens Z = {zj}Mj=1 ∈ RM×C .

2. Token Processing: TheseM tokens Z are processed by a standard attention mechanism (e.g., multi-head
self-attention) to capture correlations between different physical states represented by the tokens:

Z ′
proc = Attention(Z) (C.3)
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The processed tokens are Z ′
proc = {z′j}Mj=1 ∈ RM×C .

3. Decoding to Physical Grid (Deslicing): The updated token features Z ′
proc are then broadcast back and

recomposed onto the N physical mesh points using the original slice weights w:

x′i =

M∑
j=1

wi,jz
′
j (C.4)

This yields the output features for the Physics-Attention block, X ′
phys = {x′i}Ni=1 ∈ RN×C .

A full Transolver layer typically incorporates this Physics-Attention mechanism within a standard Transformer
layer structure, including Layer Normalization and Feed-Forward Networks.

While the Physics-Attention mechanism itself is designed to have a computational complexity linear with
respect to the number of mesh points, it is important to note that the slicing (Eq. C.2) and deslicing (Eq. C.4)
operations, which involve all N points, are performed within each of the L Transolver layers. This repeated
mapping can lead to significant computational costs and memory overhead, especially for large N . This
contrasts with architectures like GAOT and UPT, which perform the encoding to a latent space and decoding
from it only once, with intermediate processing happening entirely in the latent token domain. In our
experiments with time-independent partial differential equations, we followed the settings from the original
Transolver paper [50];

Considered Hyperparameters

Architecture

Trainable parameters 3.85 M

Hidden channels 256

Attention heads 8

Number of Layers 8

MLP ratio 2

number of slice 32

Training

Optimizer AdamW

Scheduler same as in B.2

Initial learning rate 1 · 10−3

Weight decay 10−5

Number of epochs 500

Batch size 20

C.3 GNOT

General Neural Operator Transformer (GNOT) [18] is a Transformer-based framework designed for operator
learning, particularly addressing challenges such as irregular meshes, multiple heterogeneous input functions,
and multiscale problems. Its overall architecture can be represented as:

G = F ◦
(
B
)L︸ ︷︷ ︸

processor

◦E , (C.5)
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where E is the encoder, B represents a GNOT Transformer block (repeated L times), and F is the output
decoder.

1. Encoder (E): The encoder maps diverse input sources (geometry, fields, parameters, edges) to embed-
dings using dedicated MLPs. This yields query embeddings Q ∈ RNq×d for target points and a set of
m conditional embeddings {Y (ℓ) ∈ RNℓ×d}mℓ=1 from other input functions.

2. GNOT Transformer Block (B): Each block refines query embeddings Q using conditional embeddings
Y (ℓ) via:

• Heterogeneous Normalized linear Cross-Attention (HNA): Fuses Q with each Y (ℓ) using separate
MLPs for keys/values from different Y (ℓ), followed by normalization and averaging.

Q′
cross = Q+

1

Lc

Lc∑
ℓ=1

NormLinearCrossAttn(Q,Y (ℓ)) (C.6)

• Normalized Self-Attention: Applies normalized linear self-attention to Q′
cross for further refine-

ment.
Q′

self = NormLinearSelfAttn(Q′
cross) (C.7)

• Geometric Gating FFN: A Mixture-of-Experts (MoE) FFN where expert FFNs (Ek) are weighted
by pk(xcoord). These weights are predicted by a gating networkG(·) using query point coordinates
xcoord, enabling soft domain decomposition for multiscale problems.

FFNGated(X) =

K∑
k=1

pk(xcoord) · Ek(X), pk(xcoord) = Softmax(Gk(xcoord)) (C.8)

These components, with Layer Normalization and residual connections, form the block.

3. Decoder (F ): After L blocks, a final decoder (typically an MLP) maps processed query features to the
output solution.

Considered Hyperparameters

Architecture

Trainable parameters 4.87 M

Hidden channels 128

Attention heads 8

Number of Layers 8

MLP ratio 2

Training

Optimizer AdamW

Scheduler same as in B.2

Initial learning rate 1 · 10−3

Weight decay 10−5

Number of epochs 500

Batch size 20
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D Datasets

In this work, we test GAOT on 24 benchmarks for both time-independent and time-dependent PDEs of
various types, ranging from regular grids to random point clouds to highly unstructured adapted grids. The
time-dependent and Poisson-Gauss dataset are sourced from [20] and [39], respectively. A static elasticity
dataset is from [26]. We have generated five additional challenging datasets: a Poisson-C-Sines dataset
exhibiting multiscale properties, and four datasets for compressible fluid dynamics with highly unstructured
adapted grids. Detailed information regarding these datasets can be found in the Tab D.1.

Table D.1. Overview of the datasets used in this work. Datasets listed above line are time-independent,
while those below are time-dependent. Geometry variation (GeoVar) describes whether all data samples share
the same geometry. Characteristic briefly describes each dataset’s geometry or PDE setup. The PDE Type
column indicates the corresponding class. Visualization (Vis.) provides references to visual examples; for
time-dependent datasets, this may include visualizations for both unstructured partially ones and original
regular grid ones. Datasets marked with ∗ are newly proposed in this work.

Abbreviation GeoVar Characteristic PDE Type Vis.

Poisson-C-Sines∗ F Circular domain with sines f PE G.1

Poisson-Gauss F Gaussian source PE G.2

Elasticity T Hole boundary distance HEE G.3

NACA0012∗ T Flow past NACA0012 airfoil CE G.4

NACA2412∗ T Flow past NACA2412 airfoil CE G.5

RAE2822∗ T Flow past RAE2822 airfoil CE G.6

Bluff-Body∗ T Flow past bluff-bodies CE G.7

DrivAerNet++(p) T Surface pressure INS G.8

DrivAerNet++(wss) T Surface wall shear stress INS G.9

NS-Gauss F Gaussian vorticity IC INS G.10, G.18

NS-PwC F Piecewise const. IC INS G.11, G.19

NS-SL F Shear layer IC INS G.12, G.20

NS-SVS F Sinusoidal vortex sheet IC INS G.13, G.21

CE-Gauss F Gaussian vorticity IC CE G.14, G.22

CE-RP F 4-quadrant RP CE G.15, G.23

Wave-Layer F Layered wave medium WE G.16, G.24

Wave-C-Sines F Circular domain with sines IC WE G.17

We focus on the following PDE Types under various initial/boundary conditions and domain geometries:

Hyper-Elastic Equation (HEE) :

ρs
∂2u

∂t2
+ ∇ · σ = 0, (D.1)

where ρs is the mass density, u is the displacement vector, and σ is the stress tensor. A constitutive model links
the strain tensor ϵ to the stress tensor. The material is the incompressible Rivlin-Saunders type, characterized
by σ = ∂w(ϵ)

∂ϵ with w(ϵ) = C1(I1 − 3) + C2(I2 − 3).

Poisson Equation (PE) :
−∆u = f, in (0, 1)2, (D.2)
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with homogeneous Dirichlet boundary conditions. The dataset related to poisson equation use either sinusoidal
or Gaussian-like source terms on square or circular domains (see Table D.1).

Incompressible Navier–Stokes (INS) :

∇ · v = 0,

∂tv + (v · ∇)v = −∇p+ ν∇2v,

where v is the velocity field, p is the pressure, and viscosity is ν. It assumes periodic boundary conditions and
sample various initial conditions (e.g., Gaussian, piecewise-constant, sinusoidal vortex sheets).

Compressible Euler (CE) :

∂tu + ∇ · F = 0, u = (ρ, ρv, E)⊤, E = 1
2ρ∥v∥

2 + p
γ−1 , (D.3)

with γ = 1.4. Showing in [20], it imposes periodic boundary conditions and ignore gravity effects. Data are
generated using random initial/boundary conditions such as Gaussian or Riemann problem (RP) setups.

Wave Equation (WE) :
∂ttu − c2(x, y)∇2u = 0, (D.4)

with a spatially varying propagation speed c(x, y) in an inhomogeneous medium. The dataset employs
absorbing or homogeneous Dirichlet boundaries. Initial conditions (e.g., sinusoidal or layered) are drawn
from parameterized distributions.

All time-dependent problems are numerically integrated up to T = 1 (except for the Wave-C-Sines where
T=0.005), collected (up to) Nt = 21 uniform snapshots per sample at t ∈ {0, 2, 4, 6, 8, 10, 12, 14}. For
time-dependent PDE, as mentioned before, we use the same all2all training strategy proposed in Poseidon [20].
This means that each trajectory can generate 28 pairs for training.

D.1 Poisson-C-Sines

This dataset contains solutions to the two-dimensional Poisson equation with a circular domain. The Poisson
equation is a fundamental linear elliptic partial differential equation (PDE) given by Eq. D.2. The dataset
represents the mapping from the source term f to the solution u using the solution operator G† : f 7→ u. The
source term is defined as:

f(x, y) =
π

K2

K∑
i,j=1

aij · (i2 + j2)−r sin(πix) sin(πjy), ∀(x, y) ∈ D, (D.5)

where r = −0.5 and K = 16. The coefficients aij are sampled i.i.d. uniformly from [−1, 1] to generate the
dataset. The solution u is computed on a circular domain with zero Dirichlet boundary conditions. The dataset
is generated using a finite element method (FEM) on a triangular mesh in a circular domain. The mesh is
generated using the Delaunay algorithm with 16431 points and 32441 elements.

D.2 Compressible Flow Past Airfoils & Bluff Bodies

A classic benchmark for compressible flow physics used for testing the accuracy of neural operators and PDE
foundation models is the case of flow past airfoils [20, 26]. The datasets used in these papers are limited
to transonic flow past perturbations of a single airfoil. To capture a broader range of rich flow phenomena,
it is essential to explore the parameter space spanned by the Mach number Ma, angle of attack α and
the shape function. To address this issue, this new dataset introduces samples comprising a range of flow
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phenomena from subsonic to supersonic flow for varying angles of attack across classical airfoils and various
bluff body geometries. The steady-state compressible Euler equations govern the flow phenomena in this
dataset. The equations have been solved using the finite-volume EULER solver of the open-source software
SU2 [11] on an unstructured grid generated by Delaundo [40]. Convective flux discretization is done using
the Jameson-Schmidt-Turkel (JST) scheme that is designed especially for achieving quick convergence to
steady-state solutions of the compressible Euler equations. Figure D.1 represents an O-type unstructured
mesh generated using Delaundo for the RAE2822 airfoil. Similar O-type unstructured meshes have been
generated for all airfoils and bluff-bodies considered. The free-stream pressure and temperature conditions for
all simulations in this dataset are p∞ = 1 atm and T∞ = 288.15 K.

Figure D.1. O-type unstructured mesh - RAE2822 airfoil

D.2.1 Airfoils

Flow past airfoils is considered for 0.5 ≤ Ma ≤ 1.4, 0.5◦ ≤ α ≤ 5.0◦ and for 500 unique perturbations
applied to shape functions of the NACA2412, NACA0012, and RAE2822 airfoils. Anisotropic adaptive
mesh refinement for highly accurate shock resolution (oblique and bow shocks) is performed using INRIA’s
pyAMG library coupled with SU2 [32] . The anisotropic mesh refinement is done using a Mach sensor that
generates refined meshes based on the simulation on a coarse grid such as in Figure D.1. The final simulations
are then performed by the SU2 EULER solver on the new refined mesh. Figure D.2 represents the highly
unstructured adapted grids for transonic and supersonic flow past the RAE2822 airfoil.

We consider the reference airfoil shapes with the upper and lower surface coordinates located at (x, yU
ref(ξ))

and (x, yL
ref(ξ)) where ξ = x

c , c is the chord length. We use the Class Function/Shape Function Transformation
(CST) Method [24] for parameterizing the airfoil surfaces in terms of a class functionC(ξ) and shape functions
SU(ξ), SL(ξ) using an in-house MATLAB code. The airfoil upper surface function ηU(ξ) and lower surface
function ηL(ξ) are parametrized as follows:

ηU(ξ) = C(ξ)SU(ξ), ηL(ξ) = C(ξ)SL(ξ) (D.6)

where the class function for airfoils is given as:

C(ξ) =
√
ξ(1− ξ) (D.7)
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and the upper and lower surface shape functions are respectively

SU(ξ) =

n∑
i=0

Ai
n!

i!(n− i)!
ξi(1− ξ)i, SL(ξ) =

n∑
i=0

Bi
n!

i!(n− i)!
ξi(1− ξ)i (D.8)

The polynomials Si,n = n!
i!(n−i)!ξ

i(1− ξ)i associated with the coefficients (Ai, Bi) are Bernstein polynomials
and n = 7 is chosen. The parameters (Ai, Bi) directly influence key airfoil design variables such as the
leading edge radius, trailing edge boattail angle, maximum airfoil thickness and maximum thickness location.
The parameters (A0, B0) are linked to the leading edge radius RLE as follows,

A0 = −B0 =
√
2r, r =

RLE

c
(D.9)

and the parameters (An, Bn) are linked to the upper boattail angle βU and lower boattail angle βL :

An = tan(βU), Bn = tan(βL) (D.10)

To generate perturbed variations of the airfoils, minor random perturbations are made to the CST parameters
(Ai, Bi) keeping in mind the constraintsA0 = −B0,Ai > Bi and βU > βL. We have randomly sampled 5384
solutions from our dataset for each classical airfoil shape with a train/validation/test split of 5000/128/256.
For each data, we sub-samples 8000 points for training, validation and testing.

D.2.2 Bluff-Body

Flow past bluff-bodies is considered at 0.3 ≤ Ma ≤ 1.3, 0.5◦ ≤ α ≤ 15.0◦ for a wide variety of simple
bluff-body geometries. Steady-state solutions for the compressible Euler equation for flow past bluff-bodies
may not exist or are often unstable making it difficult to attain convergence. This bluff-body aerodynamics
dataset comprises of samples that are at pseudo-steady state in a large finite-time limit. Figure E.6a describes
all the bluff body geometries taken into consideration in this dataset.

We sample 4384 solutions from our dataset with a train/validation/test split of 4000/128/256 for all bluff-body
geometries used for "Training and Testing" . For each data, we sub-samples 14000 points for training,
validation and testing.

E Additional Results

E.1 Accuracy, Robustness and Computational Efficiency Metrics

Accuracy For benchmarks in Table 1 and Table E.3, we adopt the relative L1 error metric, following the
manner of CNO [45], to measure the discrepancy between the ground-truth operator output S(a) and the
model’s prediction Sθ(a) over a discrete set of points. Suppose a given sample is discretized into N points

Figure D.2. Adaptively refined meshes for flow past the RAE2822 airfoil at α = 2.0 and at different Ma =
0.8 (left), 1.0 (center), 1.4 (right).
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(either on a regular grid or an unstructured mesh). For a single-component solution field, the discretized
relative L1 error ε is defined as

ε =
1

N

N∑
i=1

∣∣(S(a))
i
−

(
Sθ(a)

)
i

∣∣∣∣(S(a))
i

∣∣ . (E.1)

Because the test set contains multiple input–output pairs {(a,S(a))}, we obtain a distribution of errors. We
report the median of these errors—rather than the mean—to mitigate the influence of strong outliers. For multi-
component PDE solutions (e.g., velocity and pressure fields), we compute the median error per component,
then average these medians to obtain a single scalar metric. In time-dependent tasks, we specifically report the
relative L1 error at the final time snapshot, as errors usually accumulate over time and thus the last snapshot
often poses the greatest challenge.

For the pressure and wall shear stress (WSS) in the DrivAerNet++ dataset, we evaluated the model on 1154
samples according to the official leaderboard. The errors are calculated based on normalized pressure and WSS.
For pressure, the mean and standard deviation (std) for normalization were obtained from the open-sourced
code of [12]. However, for WSS, as the normalization statistics were not open-sourced, we calculated the
mean and variance for the x, y, and z components over 8000 samples to be used for normalization. The Mean
Squared Error (MSE) and Mean Absolute Error (MAE) are first computed for each individual sample. Then,
the average of these errors across the 1154 test samples is reported as the final result. This entire procedure
strictly follows their open-sourced code methodology of [12].

In Table E.1, we further provide an aggregate performance comparison of GAOT and three representative
baseline models (Transolver, GINO, RIGNO-18) on both time-dependent and time-independent dataset
categories, described in Table 1. Specifically, for each individual dataset, we calculate the normalized scores
for every model. The best-performing model is assigned a score of 1. The scores for other models are
calculated as the ratio of the best model’s error to their respective errors:

Snorm =
errorbest

errormodel
(E.2)

These dataset scores are then summed for each model to derive total scores for the time-dependent and
time-independent dataset categories, respectively, offering a complete view of model performance.

Robustness To evaluate the consistency of model performance across different datasets, we introduce a
Robustness Score. This score is calculated for both the time-dependent and time-independent categories of
datasets. Leveraging the normalized scores obtained by each model on the individual datasets within these
categories, the Robustness Score for a model is defined as:

Robustness Score = S̄norm × (1− CV), (E.3)

where S̄norm is the mean of the model’s normalized scores across all datasets in a specific category (either
time-dependent or time-independent). The term CV represents the Coefficient of Variation of these normalized
scores, calculated as:

CV =
σSnorm

S̄norm
, (E.4)

where σSnorm is the standard deviation of the model’s normalized scores within that same category. A higher
Robustness Score suggests that a model not only achieves high average performance (high mean normalized
score) but also exhibits less variability in its performance across the different datasets within the category
(low CV), indicating greater reliability. The robustness scores for GAOT, Transolver, GINO and RIGNO-18
are shown in Table E.1.

Computational Efficiency To provide a comprehensive characterization of model performance and analyze
the inherent accuracy-efficiency trade-off, we further evaluate the computational efficiency of the models
during both training and inference phases.

35



Training efficiency is quantified by the training throughput, defined as the number of samples the model can
process per second during training, encompassing the forward pass, backward pass, and gradient update. A
high training throughput is indicative of a model’s ability to learn quickly from data. This is essential for
handling large-scale datasets or developing large foundation models where training time can be a significant
bottleneck. For measuring throughput, the batch size for each model was determined first by identifying
the maximum value that could be run without encountering Out-of-Memory (OOM) errors on the target
hardware. The actual batch size used for the throughput measurement was then set to approximately half
of this maximum. This heuristic is based on the observation that peak throughput is often not achieved at
the absolute maximum batch size, but rather at a point (frequently around half the maximum) where GPU
resources, such as shared memory bandwidth, are optimally utilized, leading to the highest processing rates.

Inference efficiency is measured by the inference latency, which is the time taken for the model to perform a
single forward pass on an individual sample (i.e., batch size of 1). Low inference latency is a critical attribute
for the practical deployment of models, particularly in applications requiring real-time or near real-time
predictions, such as in engineering simulations, interactive design tools, or control systems.

All computational efficiency metrics were benchmarked on the Bluff-Body dataset with one NVIDIA-4090
hardware. To ensure reliable and stable measurements, the GPU was warmed up prior to data collection, and
each reported metric is the average of 100 repeated measurements.

E.2 Results for Radar Chart in Main Text.

Table E.1 presents the raw data used to generate the radar chart in Figure 1 of the main text. The metrics
depicted in the radar chart include:

• Accuracy (Acc. and Acc.(t)): Overall accuracy on time-independent (Acc.) and time-dependent
(Acc.(t)) datasets.

• Robustness (Robust. and Robust.(t)): Robustness on time-independent (Robust.) and time-dependent
(Robust.(t)) datasets.

• Training Throughput (Tput.(train)): The number of samples processed per second during training.

• Inference Latency (Infer. Latency): The time (ms) taken for a single forward pass on one sample
during inference.

The precise definitions and calculation methodologies for these metrics are detailed in Sec. E.1

Model acc.(t) . acc. Tput(train) Infer Latency Peak memory InputScal. ModelScal robust(t) robust

GAOT 7.45 6.30 97.5 6.966 101.7 68.12 48.7 0.80 0.77
Transolver 0 4.12 39.5 15.295 144.0 8.96 6.69 0 0.22

GINO 2.77 2.94 60.4 8.455 556.8 30.53 40.00 0.15 0.19
RIGNO-18 7.37 4.38 50.3 12.749 188.8 12.52 7.51 0.85 0.29

Table E.1. Data for Radar Chart

Table E.1 also includes Peak Memory (MB), which records the peak GPU memory consumption of each
model during inference with a batch size of 1. Although not visualized in the radar chart (Figure 1), the data
indicates that GAOT exhibits the lowest peak memory usage among the compared models. Furthermore,
Figure E.1 (a, c) illustrates the scaling of peak memory with increasing input grid size and model size,
respectively. These plots demonstrate GAOT’s superior memory utilization capabilities.

The Input Scalability and Model Scalability scores presented in the radar chart are derived from the training
throughput measured under specific conditions:

• Input Scalability is based on throughput at an input grid size of 50,000 points.
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Figure E.1. Performance scaling comparisons across different metrics.

• Model Scalability is based on throughput for a model size of approximately 70 million parameters.

These particular evaluation points were chosen due to the performance limitations encountered with models
like RIGNO-18 and Transolver on a single NVIDIA 4090 GPU, which prevented us from benchmarking them
at larger scales. It is important to note that GAOT’s architecture allows it to scale significantly beyond these
tested limits.

SM Figure E.1 provides detailed scaling curves for both peak memory and training throughput as functions of
input grid size and model size. To vary the model size for these comparisons, we systematically adjusted key
architectural width parameters for each model:

• For Transolver, we scaled its hidden channel dimension through [64, 128, 256, 512, 1024].

• For RIGNO, the hidden channel dimensions of its node and edge functions were varied across [64, 128,
256, 512, 1024].

• For GINO, the hidden channel dimension of its FNO processor layers was selected from [16, 32, 64,
128, 256, 512].

• For our GAOT model, we scaled the hidden channel dimension of its attention layers using values from
[64, 128, 256, 512, 1024, 2048], while the hidden dimension of its FFN layers was maintained at four
times the attention layer’s hidden dimension.

This figure also introduces results for GAOT-8, a variant of GAOT where the patch size in the transformer
processor is set to 8 (the default GAOT employs a patch size of 2). As shown, GAOT-8 can achieve enhanced
computational performance. Furthermore, as detailed in our ablation studies (Section F.2), this improvement
in efficiency with GAOT-8 does not give rise to the substantial accuracy degradation.
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E.3 Regular Grid Dataset

In addition to datasets with arbitrary point cloud geometries, we also evaluated the performance of our GAOT
model on time-dependent PDE datasets where the inputs are provided on regular (structured) grids. The
results for GAOT are compared against several baselines, including RIGNO (RIGNO-18 and RIGNO-12),
CNO, scOT, and FNO. The performance data for these baseline models are sourced from the original RIGNO
paper [39].

As demonstrated in Table E.2, GAOT also performs well on these structured grid datasets. Our model
consistently ranks within the top two across six of the seven benchmark datasets, achieving the leading (first
place) performance on five of them. This highlights GAOT’s robustness and strong generalization capabilities
across different input discretizations.

Table E.2. Benchmarks with time-dependent datasets with regular grid inputs. Best and 2nd best models are
shown in blue and orange fonts for each dataset.

Dataset Median relative L1 error [%]

Structured GAOT RIGNO-18 RIGNO-12 CNO scOT FNO

NS-Gauss 2.29 2.74 3.78 10.9 2.92 14.41
NS-PwC 1.23 1.12 1.82 5.03 7.12 12.55
NS-SL 0.98 1.13 1.82 2.12 2.49 2.08

NS-SVS 0.46 0.56 0.75 0.70 1.01 7.52
CE-Gauss 5.28 5.47 7.56 22.0 9.44 28.69

CE-RP 4.98 3.49 4.43 18.4 9.74 38.48
Wave-Layer 5.40 6.75 8.97 8.28 13.44 28.13

E.4 Model and Dataset Scaling

Model Size To further investigate the scalability of our approach, we conduct an ablation study on how
different model sizes affect performance. We focus on the two compressible Euler datasets, CE-Gauss and
CE-RP, each with 1,024 training trajectories. We measure the final-time relative L1 error (t = t14) and record
the total number of parameters and per-epoch training time under various hyperparameter configurations.

We vary the following components of our GAOT architecture as explained in the Tab B.2:

• LC (Lifting Channels): The number of channels used during the encoder stage to project from the
unstructured node features to latent tokens. Intuitively, a larger LC can preserve more local features
when mapping from the input domain to the latent space.

• TL (Transformer Layers): The depth of the transformer-based processor. Increasing TL typically
increases modeling capacity for global interactions.

• THS (Transformer Hidden Size): The hidden dimension of each self-attention block. A larger THS can
capture richer representations.

• FFN (Feed-Forward Network Size): The hidden dimension inside the FFN sub-layer, which we set to
4× THS following standard vision transformer practice.

Table E.3 summarizes the performance across a range of these hyperparameters. We also record the total
number of trainable parameters (in millions) and the approximate epoch time (in seconds) on one NVIDIA
4090 GPU with a batch size of 64. Here, all experiments are done with patch size equal to 2.

From the top block of Table E.3 (rows 1–4), we observe that as we increase THS from 32 to 256 (keeping
TL=5 and LC=32), the final-time errors on both CE-Gauss and CE-RP decrease significantly. For example, on
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Table E.3. Relative L1 test errors at t = t14 with different architectural hyperparameters. Time refers to
training time with batch size equals to 64 on 1 NVIDIA-4090 GPU, and the patch size is set to 2. The size of
training trajectories is 1024.

Model size Hyperparameters Median relative L1 error [%]
Parameters [M] Time [s] LC TL THS FFN CE-Gauss CE-RP

0.14 84 32 5 32 128 48.4 26.5
0.41 89 32 5 64 256 13.2 12.0
1.42 100 32 5 128 512 9.17 7.90
5.6 143 32 5 256 1024 6.88 5.28

5.5 142 16 5 256 1024 7.97 5.94
5.6 154 64 5 256 1024 6.94 5.18
6.1 181 128 5 256 1024 7.33 5.20

1.16 50 32 1 256 1024 25.0 14.5
3.39 98 32 3 256 1024 9.00 6.80
11.2 260 32 10 256 1024 5.28 5.35
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Figure E.2. Relative median L1 test errors at t = t14 with different strategies for scaling model sizes. The
x-axis in the left plot corresponds to all the following hyperparameters: THS and TL.

CE-Gauss, the error drops from 48.4% down to 6.88%. This trend reflects the transformer’s ability to scale
with hidden dimension. The training time per epoch grows from roughly 84 seconds to 143 seconds. While
performance improves, larger THS demands more computational resources.

Next, we fix (TL,THS)=(5,256) and vary LC in the middle block (rows 5–7). Setting LC=32 consistently
achieves strong results. Lowering LC to 16 slightly degrades performance, while pushing LC to 64 or
128 yields only marginal gains. Hence, LC=32 appears sufficient to capture the encoder-level geometry
information.

Finally, the bottom block (rows 8–10) examines the effect of transformer layers TL from 1 up to 10. With
TL=1, errors remain quite high (25.0% on CE-Gauss); adding layers substantially reduces error to 9.0%

at TL = 3, and ultimately down to 5.28% at TL=10 on CE-Gauss. Increasing TL to 10 also expands the
parameter count to 11.2M, nearly doubling the training time per epoch (260s).

Figure E.2 illustrates how errors decrease as we scale THS or TL, while Figure E.3 shows the effect of changing
LC or the total parameter count. The largest model tested reaches 11.2M parameters and attains around 5%

error on CE-Gauss, demonstrating the potential to improve accuracy by investing in more computational
resources.
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Figure E.3. Relative L1 test errors at t = t14 with different strategies for scaling model sizes. The x-axis in the
left plot corresponds to all the following hyperparameters: LC, and the total number of trainable parameters.

Data Size So far, we have discussed how increasing model size affects accuracy. In this subsection, we turn
our attention to data scaling: we examine how the learned operator’s performance changes as the number of
training samples (trajectories or static solutions) grows. Figure E.4 illustrates two sets of experiments:
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Figure E.4. Relative L1 test errors against the size of training dataset. The left plot shows these results for
the time-dependent fluid datasets, and the right plot for time-independent datasets. The lines show linear
regression slopes for each dataset.

(a) Time-Dependent (Fluid) Datasets. We plot the final-time (t = t14) error on multiple fluid PDE benchmarks
as a function of the training set size {128, 256, 512, 1024}. All of these datasets use partial-grid subsampling.
The results confirm that as we increase the number of training trajectories, errors consistently drop across all
fluid datasets, often in a near-linear fashion with respect to the number of training trajectories. This trend
highlights the model’s capacity to benefit from additional time-series diversity.

(b) Time-Independent (Static) Datasets. We similarly measure how the final solution error decreases when
expanding the dataset size to {128, 256, 512, 1024, 2048} for three static PDE tasks: Poisson-Gauss, Poisson-
C-Sines, and Elasticity. Note that elasticity is limited to at most 1024 samples due to data availability. Across
all these static problems, we observe a consistent downward slope in error as the number of samples increases,
again underscoring the advantage of larger training sets.
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Overall, in both dynamic (time-dependent) and static (time-independent) scenarios, GAOT exhibits a scalable
relationship between training set size and error reduction. As the training data grows, the learned operator
converges more reliably to the underlying PDE solution. This robust data scaling property supports our
premise that GAOT can serve as a strong foundation model backbone for PDE tasks, becoming increasingly
accurate with more extensive datasets.

E.5 Resolution Invariance

One of the core properties for operator learning is resolution invariance–the ability to train on a specific
discretization yet accurately predict solutions at higher/lower resolutions. To validate this property in our
GAOT framework, we conduct experiments on a time-independent PDE, Poisson-Gauss.
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Figure E.5. The GAOT model is trained at a resolution of 2048 and evaluate at various test resolutions. The
results for RIGNO-18, Transolver and GINO correspond to models trained and tested at a resolution of 8192.

Figure E.5 illustrates the resolution invariance capabilities of GAOT. In this experiment, GAOT was trained
using data discretized by 2048 points. Its performance was then evaluated across a spectrum of seven distinct
resolutions: three sub-resolution settings (256, 512, and 1024 points), the training resolution itself (2048
points), and three super-resolution settings (4096, 8192, and 16384 points). For comparative purposes,
Figure E.5 also displays the performance of the top three baseline models from Table 1 (excluding GAOT
itself), namely RIGNO-18, Transolver, and GINO. These baseline results were obtained from models that
were both trained and tested at a resolution of 8192 points.

The results demonstrate that GAOT possesses excellent resolution invariance. Notably, even when trained
at a resolution of 2048 points, GAOT not only generalizes well to higher resolutions but also achieves the
best performance when tested at 8192 points. It outperforms the baseline models which were specifically
trained for and tested at this higher resolution (8192 points), underscoring GAOT’s efficiency and robustness
in learning resolution-independent solution operators.
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E.6 Transfer Learning

The set of geometries illustrated in Figure E.6a, represent the varying bluff-body geometries in the Bluff-Body
dataset, which is one of the benchmarks presented in Tab. 1 of the main text. This dataset is constructed by
simulating compressible flow across diverse bluff-body geometries at varying Ma and α, as described in
Sec. D.2. The distinct shapes depicted in Figure E.6b were specifically employed for the fine-tuning stage
of our transfer learning experiments. The corresponding transfer learning performance, demonstrating the
model’s ability to adapt from the shapes used for pretraining to the novel ones indicated in Figure E.6b, is
presented in Figure 3(c) in the main text.

Square Circle Cone Rectangle-L Semicircle-F

Ellipse Ellipse Ellipse Ellipse Ellipse

(a) Shapes utilized for pretraining in the transfer learning experiments.
Cone-F Rectangle-S Semicircle-C Ellipse-1 Ellipse-2

(b) Bluff body shapes employed for the fine-tuning (FT) phase of the transfer learning task.

Figure E.6. The geometries in (a) are included in the Bluff-Body dataset in Tab. 1. Shape-* (*: C, F, S, L;
Shape: Semicircle, Cone, Rectangle) indicates shapes and their contact surfaces (*) with respect to the flow.
Here, F - flat surface, C - curved surface, L - larger side, S - smaller side.

E.7 Training Randomness

In order to quantify the dependence of the final model performance on the inherent randomness in the training
process, such as in weight initialization, we trained the GAOT model six independent times. Each training run
utilized a different seed for the pseudo-random number generator. These experiments were conducted on the
Bluff-Body dataset. The statistics of the resulting relative L1 test errors across these six runs are summarized
in Table E.4. The standard deviation of these errors is 0.12. This relatively small standard deviation suggests
that the GAOT model exhibits good stability with respect to the random aspects of the training procedure.
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Table E.4. Statistics of relative L1 test errors with different random seeds. We train GAOT on Bluff-Body
dataset, which is repeated 6 times.

Dataset Error [%]

Mean ± Standard deviation

Bluff-Body 2.39 ± 0.12

F Ablation Studies

F.1 Encode-Process-Decode

In this subsection, we investigate the performance of four different encode–process–decode architectures
on both time-dependent and time-independent PDE benchmarks. The four models considered are GAOT
(ours), Regional Attentional Neural Operator (RANO), Regional Fourier Neural Operator (RFNO) and
GINO [29], with components are Message-Passing (MP) graph neural network [16], Transformer [49], Fourier
Neural Operator (FNO) [27], Graph Neural Operator (GNO) [28] and proposed Multi-scal Attentional GNO
(MAGNO). Table F.1 summarizes the components of each model. All variants follow an encode–process–
decode pipeline but differ in how graph, Fourier, or transformer-based mechanisms are deployed.

Model Encode Process Decode
GAOT MAGNO Transformer MAGNO
RANO MP Transformer MP
RFNO MP FNO MP
GINO GNO FNO GNO

Table F.1. Components for different encode–process–decode designs.
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Model
GAOT

RANO

RFNO

GINO

Figure F.1. Median relative L1 errors (%) of GAOT, RANO, RFNO, and GINO on six PDE benchmarks.

Figure F.1 shows the median relative L1 error for each model on six PDE datasets (4 time-dependent PDEs, 2
time-independent PDEs). All models are trained for 500 epochs under the same data splits and hyperparameter
conditions. We can see that GAOT consistently achieves strong performance and robustness across all six
datasets. Its errors remain low, highlighting the effectiveness of combining MAGNO for local geometric
encoding with transformer-based global attention. GINO ranks second in overall accuracy, yet exhibits
noticeable difficulties on NS-Gauss and Poisson-C-Sines. RANO and RFNO perform moderately well on
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simpler datasets (e.g. Elasticity), but show instability on more challenging tasks (e.g. NS-SVS or NS-Gauss).
This indicates that reliance on message-passing or FNO-based processors alone may not be sufficient to handle
diverse PDE and geometry conditions with the same level of robustness.

Overall, these results reinforce GAOT’s stability across multiple PDE settings. Even with a fixed training
protocol (500 epochs for each dataset), GAOT consistently converges faster and more reliably, underscoring
the advantage of geometry-aware tokens, multiscale attention, and the flexible transformer backbone.

F.2 Tokenization Strategies

In Section B.1, we have introduced three tokenization methods. Here, we compare these strategies on two
datasets, Elasticity and Poisson-C-Sines. Figure F.2 shows the final median relative L1 errors for each
approach. The Strategy I consistently achieves the best performance on both unstructured datasets. Strategy II

0 20 40 60 80 100

Median relative L1 error [%]

Elasticity

Poisson-C-Sines

Tokenization
Strategy I

Strategy II

Strategy III

Figure F.2. Median relative L1 errors (%) comparing three tokenization strategies on Elasticity, and Poisson-
C-Sines. The Strategy I, II, III corresponds to the methods discussed in Section B.1.

& III perform similarly to Strategy I on simpler datasets (elasticity), but can fail to converge on the more
challenging one, Poisson-C-Sines. Similar situations also happen on models like UPT and GNOT in Tab. 1
of main text. Overall, Strategy I emerges as the most robust approach in our current experiments. While
Strategies II and III show promise, they require more careful optimization to match Strategy I’s reliability.

Next, we focus on Strategy I and study how varying the number of latent tokens (LT), patch size (PS), and
radius (GR) affect performance. Note that here we do not use multiscale radii; each token has a single radius.
Table F.2 summarizes experiments on the elasticity and Poisson-Gauss datasets. Results show that fewer

Table F.2. Median relative L1 errors (%), parameter counts, and training time with different numbers of latent
tokens (LT), patch sizes (PS), and radii (GR).

Model Size Hyperparameters Median Relative L1 Error [%]
Params [M] Time [s/it] LT PS GR Elasticity Poisson-Gauss

5.60 10.1 [64, 64] 2 0.033 1.80 1.05
6.00 3.06 [64, 64] 4 0.033 1.71 1.57
10.7 2.20 [64, 64] 8 0.033 1.60 1.65

5.56 10.1 [32, 32] 1 0.066 3.41 1.22
5.60 3.00 [32, 32] 2 0.066 2.25 1.22
6.00 11.8 [128, 128] 4 0.033 1.67 1.72
10.7 5.02 [128, 128] 8 0.033 1.62 1.22

tokens (e.g., [32,32]) can degrade performance in some cases (elasticity), presumably because the domain
coverage becomes coarser, making it harder to capture local variations. More tokens ([64,64] or [128,128])
typically improve accuracy and stabilize convergence. Nevertheless, computational costs rise when the
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number of tokens grows, as transformer attention scales quadratically with token count. Increasing the patch
size (PS) reduces the number of tokens entering the transformer, lowering the training time. Encouragingly,
performance does not degrade sharply with larger patches. For instance, going from PS = 2 to 8 is fairly
stable across datasets. Note that the overall parameter count can increase if each token aggregates larger local
features, but in practice, training runs faster due to fewer tokens in self-attention. Radius (GR) grows if we
reduce the number of latent tokens because we need to ensure coverage of the entire physical domain by
enlarging the receptive field. This is critical for unstructured or irregular samples, especially if tokens must
capture a bigger subregion.

F.3 Time-Stepping Method

We now investigate how different time-stepping formulations (see Section B.5) affect performance on time-
dependent PDEs. Specifically, we compare the output, residual, and derivative stepping strategies. Table F.3
reports the median relative L1 errors for six representative fluid dynamics benchmarks on regular grids.

Table F.3. Median relative L1 errors (%) at final time t14 for GAOT with three different time-stepping methods.

Dataset Median relative L1 error [%]
Output Residual Derivative

NS-Gauss 3.57 3.60 2.52
NS-PwC 1.95 1.70 1.23
NS-SL 1.78 1.49 1.29

NS-SVS 0.60 0.60 0.56
CE-Gauss 8.80 8.93 7.97

CE-RP 5.17 6.12 5.94

As shown, modeling the operator as a time derivative (derivative column) often yields the lowest final-
time errors on all but one dataset (CE-RP, where the Output strategy slightly outperforms the others). We
hypothesize that treating the operator as ∂tu naturally enforces a continuous dependence on time, analogous
to neural ODEs or residual networks [19, 9], which can improve stability and accuracy over multiple steps. In
experiments involving time-dependent PDEs, we therefore use derivative time stepping as the default unless
stated otherwise. This approach not only achieves strong final-time accuracy, but also aligns with our design
goal of a differentiable, time-continuous operator.

F.4 Geometric Embedding

As discussed in Section B.3, our framework incorporates a geometric embedding network to encode shape and
domain information separately from the physical (PDE) state. Table F.4 compares these geometric embedding
approaches against a baseline "original" (i.e., no additional geometry embedding) on two original unstructured
datasets (Wave-C-Sines, Poisson-C-Sines).

Table F.4. Median relative L1 errors (%) for various geometry embedding approaches. Original omits
geometric embedding, while Statistical and PointNet follow Section B.3.

Dataset Median relative L1 error [%]
original statistical pointnet

Wave-C-Sines 6.50 5.69 6.07
Poisson-C-Sines 6.60 4.66 23.7

In the unstructured datasets, including Wave-C-Sines, and Poisson-C-Sines, explicitly encoding domain
geometry yields a more pronounced benefit. In particular, the statistical strategy consistently outperforms
PointNet on these irregular meshes, and in Poisson-C-Sines, training with the PointNet approach appears
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unstable (23.7% error). Based on these observations, we use statistical embedding by default for unstructured
dataset given its stable and superior performance in most cases.

F.5 multiscale Features

As introduced in Section B.2, our encoder can capture multiscale local information by aggregating neighbor-
hood features across multiple radii. Specifically, we compare:

• Single-scale: using a single fixed radius of 0.033 for each point.

• multiscale: using three radii [ 0.022, 0.033, 0.044 ] for each point.

Table F.5. Median relative L1 errors (%) comparing single-scale vs. multiscale features.

Dataset Median relative L1 error [%]
Single-scale multiscale

Wave-C-Sines 5.69 4.6
Poisson-C-Sines 4.66 3.04

Table F.5 reports the mean relative L1 errors on unstructured datasets including Wave-C-Sines and Poisson-C-
Sines. Results show that multiscale neighbors yield a clear reduction in error. For instance, in Poisson-C-Sines,
the error decreases from 4.66% to 3.04%. This contrast reflects the fact that a single, fixed receptive field on a
regularly spaced grid is often sufficient. However, on unstructured domains where the mesh density can vary,
using multiple radii helps the network capture both fine and coarse local structures.

G Visualizations of Datasets

Estimates produced by trained models are visualized in this section for different datasets.

Figure G.1. Model input, ground-truth solution, and model estimate of a test sample of the Poisson-C-Sines
dataset.
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Figure G.2. Model input, ground-truth solution, and model estimate of a test sample of the Poisson-Gauss
dataset.

Figure G.3. Model input, ground-truth solution, and model estimate of a test sample of the Elasticity dataset.
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(a) Ma = 0.7, α = 2.0◦

(b) Ma = 0.9, α = 3.0◦

(c) Ma = 1.2, α = 2.0◦

Figure G.4. Model input, ground-truth solution, model estimate and point distribution of test samples of the
NACA0012 dataset.
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(a) Ma = 0.9, α = 4.0◦

(b) Ma = 1.0, α = 1.0◦

(c) Ma = 1.3, α = 3.0◦

Figure G.5. Model input, ground-truth solution, model estimate and point distribution of test samples of the
NACA2412 dataset.
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(a) Ma = 0.6, α = 3.5◦

(b) Ma = 1.1, α = 4.0◦

(c) Ma = 1.2, α = 3.5◦

Figure G.6. Model input, ground-truth solution, model estimate and point distribution of test samples of the
RAE2822 dataset.
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(a) Cone at Ma = 0.9, α = 7.0◦

(b) Ellipse at Ma = 1.05, α = 12.5◦

(c) Semicircle-F at Ma = 1.2, α = 6.0◦

Figure G.7. Model input, ground-truth solution, model estimate and point distribution of test samples of the
Bluff-Body dataset.

Figure G.8. Model input, ground-truth solution, model estimate of a test sample N_S_WWS_WM_172 of the
surface pressure on the DrivAerNet++.
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(a) WSS - X

(b) WSS - Y

(c) WSS - Z

Figure G.9. Model input, ground-truth solution, model estimate of a test sample N_S_WWS_WM_172 of the
surface wall shear stress on the DrivAerNet++.
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Figure G.10. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
unstructured NS-Gauss dataset.
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Figure G.11. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
unstructured NS-PwC dataset.
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Figure G.12. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
unstructured NS-SL dataset.
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Figure G.13. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
unstructured NS-SVS dataset.
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Figure G.14. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
unstructured CE-Gauss dataset.
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Figure G.15. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
unstructured CE-RP dataset.
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Figure G.16. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
unstructured Wave-Layer dataset.

Figure G.17. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
Wave-C-Sines dataset.
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Figure G.18. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
NS-Gauss dataset.
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Figure G.19. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
NS-PwC dataset.
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Figure G.20. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
NS-SL dataset.
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Figure G.21. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
NS-SVS dataset.
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Figure G.22. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
CE-Gauss dataset.
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Figure G.23. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
CE-RP dataset.
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Figure G.24. Model input at t = t0, ground-truth solution and model estimate at t = t14 of a test sample
Wave-Layer dataset.
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