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. Learn Physics modeled by PDEs from
data using Neural Networks
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History: McCollough-Pitts 1943

» A biological Neuron.
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Threshold Logic unit

(a) AND (b) OR (c) NOT

e Weights are Adjustable but NOT Learned
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The perceptron of Rosenblatt (1957)
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» Uses an activation function.
> Weights are learnable
» Capable of classifying data into 2 classes
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Multi-layer Perceptron (MLP) is a direct descendant

Layer 2

Layer 1 Layer 3 Layer 4
(Input Layer) (Hidden Layer 1) (Hidden Layer 2) (Output Layer)
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Deep Neural network: Multi-layer perceptron
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MLP: Basic structure

> Given an input z € RY, MLP outputs a f*(z) € R®:
f(2)=000CKOTOCqgvvvnn... OO GO G(2).
> At the k-th Hidden layer:
2= 5(CZ¥)

= o(WHZ* 4 b9), (W, 2%, b9) € (R ek R )

> Weights: W = {Wk},, Biases: B = {b*}.

S (di+1)d,
» Parameters: § = {W,B} € © CR* o

» Hence, for every § € ©, MLP returns f;(z).
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Activation functions o (scalar—applied component wise)

Heaviside
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Activation functions o (scalar—applied component wise)

Heaviside

»  McCullock-Pitts neuron

P Zero gradient — bad for
backpropagation

»  Not used anymore
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Activation functions o (scalar—applied component wise)

Logistic fn.
1

Heaviside fre=rd

»  McCullock-Pitts neuron

P Zero gradient — bad for
backpropagation

»  Not used anymore
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Activation functions o (scalar—applied component wise)

v =100
! =1
/ V=1
0 .
Logistic fn.
Heaviside H%
»  McCullock-Pitts neuron »  Smooth approximation to

P Zero gradient — bad for Heaviside func.

backpropagation P Sigmoidal function — used in

»  Not used anymore most proofs

»  Good for binary
classification

»  Not symmetric
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Activation functions o (scalar—applied component wise)

v =100
1 =T
_/ v
0 o
Logistic fn.
Heaviside H% tanh(x) = =
»  McCullock-Pitts neuron »  Smooth approximation to

P Zero gradient — bad for Heaviside func.

backpropagation P Sigmoidal function — used in

»  Not used anymore most proofs

»  Good for binary
classification

»  Not symmetric
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Activation functions o (scalar—applied component wise)

v =100
L =1
/ V=1
0 e
Logistic fn.
Heaviside H% tanh(x) = =
»  McCullock-Pitts neuron »  Smooth approximation to P Symmetric unlike Logisitic
> Zero gradient — bad for Heaviside func. func.
backpropagation P Sigmoidal function — used in »  Smooth
»  Not used anymore most proofs P Vanishing gradients away

»  Good for binary from 0.
classification

»  Not symmetric
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Activation functions o (scalar—applied component wise)

v =10
1 ST
/ -t
0 s
Logistic fn.
Heaviside H} = tanh(x) = =
ReLU
max(0, )

Siddhartha Mishra AISE2025



Activation functions o (scalar—applied component wise)

v =100
1 =1
/ v—1
0 o
Logistic fn.
Heaviside H% tanh(x) = =
» Easy to compute
P Reduces vanishing gradient
problem
> Scale invariant
ReLU P Issue of dying neurons
max(0, )
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Activation functions o (scalar—applied component wise)

v =10
1 =T
/ -t
0 o
Logistic fn.
Heaviside H} = tanh(x) = =
ReLU e Leaky ReLU
max(0, z)
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Activation functions o (scalar—applied component wise)

v = 10
! b0 =1
7 =1
0 —
Logistic fn.
Heaviside H»rl,”” tanh(x) = hiff
ReLLU v Leaky ReLU Any many more ...
max(0, z)
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> Given an input z € RY, MLP outputs a f*(z) € R®:

f(2)=000CKOTOCqgvvvnn... OO GO G(2).
> At the k-th Hidden layer:
2= 5(CZ¥)

= o(WHZ* 4 b9), (W, 2%, b9) € (R ek R )

> Weights: W = {Wk},, Biases: B = {b*}.

S (di+1)d,
» Parameters: § = {W,B} € © CR* o

» Hence, for every § € ©, MLP returns f;(z).
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Universal Approximation Theorem

» Given any f7€ C(Y), for any tolerance € > 0, there exists
parameters 6, such that the DNN %* satisfies,

If = llcyy <e

» Proved by Cybenko, Barron, Hornik et al., Mhaskar and many
more in the late 80's.

» Continuity of the target function can be replaced by
Measurability

» But how to efficiently find the parameter 6 or an
approximation 6 such that:

If = £ llcvy << 1.
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Supervised Learning

Availability of Labelled Data: (y;, f;)
Input space Y C RY

>
>
» Jan underlying map: f: Y —R
> Training Set: S={y; € Y},1<i<N
> How to choose training set:

» Random points: y; i.i.d with respect to underlying distribution
w € Prob(Y).
» Other choices might be necessary in some contexts.

> fi=f(y;) forall y; € S.
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» For all y; € S, Labelled data f; = f(y;).
» For any § € ©, Evaluate Neural Network to obtain f;(y;)
» Loss (Mismatch, Regret) in terms of f(y;) — £, (vi)

» Popular choice of Loss functions:

N
1 *
J0) =5 D 1f ) = G )lp, 1< p<oo
i:l%/_/
Ji(0)

> p =2 = Least Squares minimization.
> p =1 = induces sparsity.
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Training in Supervised Learning

» Solve the Minimization problem:

0" ;= arg min J(0)

» Trained Neural network

f*(y) = f-(y), VyeY.
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Solving the Minimization problem

» The map 6 — J(0) is Non-convex but differentiable (a.e) !!
» Use the Gradient Descent (GD) method:

Opr1 = 00 —neVoJ(00), VLN

v

(Adaptive) Learning rate ;.

v

GD converges to a local minimum 6, !!
N

» lIssues in computing gradients: VyJ(0y) = > VgJi(6r)
i=1

> As N = #(S), for Large training data sets:

» Gradient computation is too slow.
» Requires large memory

Siddhartha Mishra AISE2025



Stochastic Gradient Descent (SGD)

» At (-th iterate of GD: choose iy € (1, N) randomly and set:

Op+1 =00 — Vi, (00), -

» Converges (convergence theory based on underlying SDE.)

» Fast (per iteration) but has high variance (noisy convergence)
I

Batch optimization
Stochastic optimization
Mini-batch optimization
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Mini-Batch SGD

» Randomly shuffle training set S into Batches S, each of size
n.

» SGD iteration:

01 =00 =m0 Y Vo (0r).

jes;
» With N/n iterations, we stride over the training set to
complete 1 Epoch.
» Reshuffle after each epoch.
» Standard (Full-Batch) GD: n= N
» SGD: n=1.
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Starting values for the optimizer

Customary to use Random starting value 6y € ©.

Heuristic scaling to minimize variance of the weights.

>

>

» Depends on activation functions

» Different g = SGD converges to different local minima.
>

Also customary to use Multiple starting values in parallel
(Retrainings)
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How to assess training success ?

» Monitor training loss.
» If not low enough (Underfitting):

» Change Network Size.
» Train more
» Change Architecture.

» But Goal is to reduce Generalization error:

Ec = / #(y) - F()[Bdu(y).
Y

» Error on Unseen data.
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Validation Set

» Let V C Y with VNS = & be Validation test.
» Evaluate Validation loss:

1 *
v = Do) = 0)IE.

yey

> #(V) is 5 — 10% of #(S)

» Sacrifice some training data to form Validation set.
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Beyond MLP: CNNs

» For Fully connected networks (MLP) — very large sizes for © if
dim(Y) >>1

» CIFAR-10 image: Input vector is in R3072 = 9 ¢ RM for
M>>1

> Induce some sparsity structure on the weight matrices W:
Discrete convolutions = Convolutional Neural Networks

» Discrete Convolutions with fixed Kernel:

Kelml = ) kic[m — 1]

i=—s
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Convnets

RELU RELU RELU RELU RELU RELU
CONVlCONVJ CONVlCONVl CONVlCONVl
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