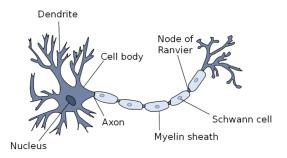
AI in the Sciences and Engineering HS 2025: Lecture 2

Siddhartha Mishra

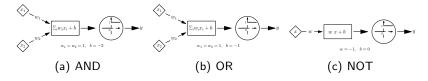
Computational and Applied Mathematics Laboratory (CamLab) Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center (and) Swiss National AI Institute (SNAI), ETH Zürich, Switzerland. Key Aim of this Course: Learn Physics modeled by PDEs from data using Neural Networks

History: McCollough-Pitts 1943

► A biological Neuron.

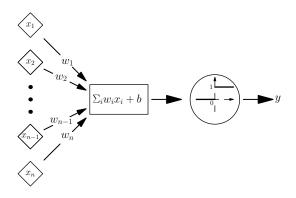


Threshold Logic unit



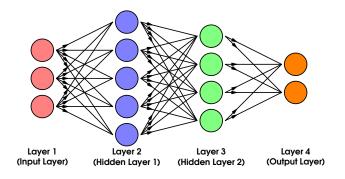
• Weights are Adjustable but NOT Learned

The perceptron of Rosenblatt (1957)

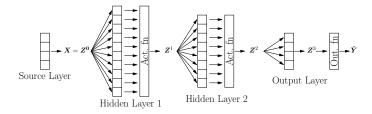


- Uses an activation function.
- ► Weights are learnable
- ► Capable of classifying data into 2 classes

Multi-layer Perceptron (MLP) is a direct descendant



Deep Neural network: Multi-layer perceptron



MLP: Basic structure

▶ Given an input $z \in \mathbb{R}^d$, MLP outputs a $f^*(z) \in \mathbb{R}^o$:

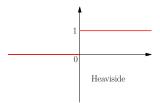
$$f^*(z) = \sigma_o \odot C_K \odot \sigma \odot C_{K-1} \ldots \odot \sigma \odot C_2 \odot \sigma \odot C_1(z).$$

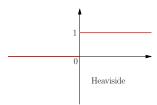
► At the *k*-th Hidden layer:

$$z^{k+1} := \sigma(C_k z^k)$$

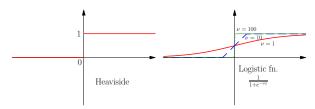
$$= \sigma(W^k z^k + b^k), (W^k, z^k, b^k) \in (\mathbb{R}^{d_{k+1} \times d_k}, \mathbb{R}^{d_k}, \mathbb{R}^{d_{k+1}}).$$

- Weights: $W = \{W^k\}_k$, Biases: $B = \{b^k\}_k$.
- ▶ Parameters: $\theta = \{W, B\} \in \Theta \subset \mathbb{R}^{\sum_{k} (d_k + 1)d_{k+1}}$.
- ▶ Hence, for every $\theta \in \Theta$, MLP returns $f_{\theta}^*(z)$.

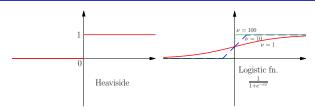




- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore

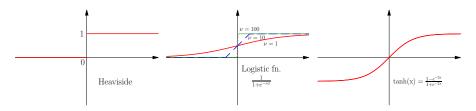


- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore



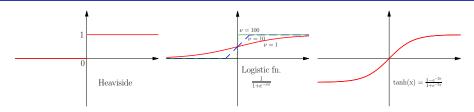
- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore

- Smooth approximation to Heaviside func.
- Sigmoidal function used in most proofs
- Good for binary classification
- Not symmetric



- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore

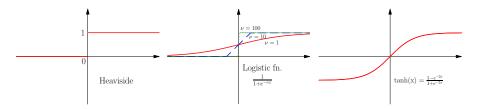
- Smooth approximation to Heaviside func.
- Sigmoidal function used in most proofs
- Good for binary classification
- Not symmetric

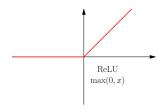


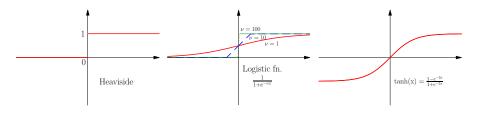
- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore

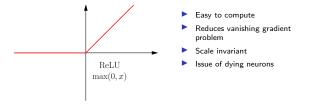
- Smooth approximation to Heaviside func.
- Sigmoidal function used in most proofs
- Good for binary classification
- Not symmetric

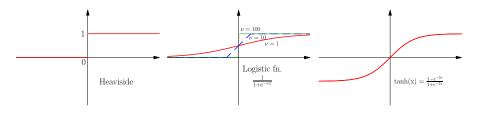
- Symmetric unlike Logisitic func.
- Smooth
- Vanishing gradients away from 0.

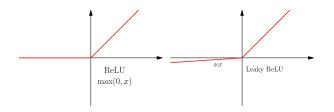


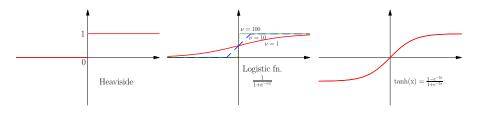


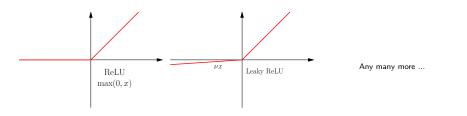












MLP

▶ Given an input $z \in \mathbb{R}^d$, MLP outputs a $f^*(z) \in \mathbb{R}^o$:

$$f^*(z) = \sigma_o \odot C_K \odot \sigma \odot C_{K-1} \ldots \odot \sigma \odot C_2 \odot \sigma \odot C_1(z).$$

► At the *k*-th Hidden layer:

$$\begin{aligned} z^{k+1} &:= \sigma(C_k z^k) \\ &= \sigma(W^k z^k + b^k), \ (W^k, z^k, b^k) \in \left(\mathbb{R}^{d_{k+1} \times d_k}, \mathbb{R}^{d_k}, \mathbb{R}^{d_{k+1}}\right). \end{aligned}$$

- Weights: $W = \{W^k\}_k$, Biases: $B = \{b^k\}_k$.
- ▶ Parameters: $\theta = \{W, B\} \in \Theta \subset \mathbb{R}^{\sum_{k} (d_k + 1)d_{k+1}}$.
- ▶ Hence, for every $\theta \in \Theta$, MLP returns $f_{\theta}^*(z)$.

Universal Approximation Theorem

▶ Given any $f \in C(Y)$, for any tolerance $\epsilon > 0$, there exists parameters $\overline{\theta}$, such that the DNN $f_{\overline{\theta}}^*$ satisfies,

$$||f - f_{\overline{\theta}}^*||_{C(Y)} \le \epsilon$$

- Proved by Cybenko, Barron, Hornik et al., Mhaskar and many more in the late 80's.
- Continuity of the target function can be replaced by Measurability
- ▶ But how to efficiently find the parameter $\overline{\theta}$ or an approximation $\widehat{\theta}$ such that:

$$||f-f_{\widehat{\theta}}^*||_{C(Y)} << 1.$$

Supervised Learning

- ▶ Availability of Labelled Data: (y_i, f_i)
- ▶ Input space $Y \subset \mathbb{R}^d$
- ▶ \exists an underlying map: $f: Y \mapsto \mathbb{R}$
- ▶ Training Set: $S = \{y_i \in Y\}, 1 \le i \le N$
- How to choose training set:
 - Random points: y_i i.i.d with respect to underlying distribution $\mu \in \text{Prob}(Y)$.
 - Other choices might be necessary in some contexts.
- ▶ $f_i = f(y_i)$ for all $y_i \in S$.

Loss Function

- ▶ For all $y_i \in \mathcal{S}$, Labelled data $f_i = f(y_i)$.
- ▶ For any $\theta \in \Theta$, Evaluate Neural Network to obtain $f_{\theta}^*(y_i)$
- ▶ Loss (Mismatch, Regret) in terms of $f(y_i) f_{\theta}^*(y_i)$
- Popular choice of Loss functions:

$$J(\theta) := rac{1}{N} \sum_{i=1}^N \underbrace{|f(y_i) - f^*_{ heta}(y_i)|_p^p}_{J_i(heta)}, \quad 1 \leq p < \infty.$$

- $ightharpoonup p = 2 \Rightarrow Least Squares minimization.$
- $ightharpoonup p = 1 \Rightarrow \text{induces sparsity}.$

Training in Supervised Learning

► Solve the Minimization problem:

$$\theta^* := \arg\min_{\theta \in \Theta} J(\theta)$$

Trained Neural network

$$f^*(y) = f^*_{\theta^*}(y), \quad \forall y \in Y.$$

Solving the Minimization problem

- ▶ The map $\theta \mapsto J(\theta)$ is Non-convex but differentiable (a.e) !!
- ► Use the Gradient Descent (GD) method:

$$\theta_{\ell+1} = \theta_{\ell} - \eta_{\ell} \nabla_{\theta} J(\theta_{\ell}), \quad \forall \ell \in \mathbb{N}.$$

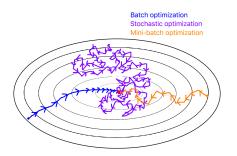
- ► (Adaptive) Learning rate η_{ℓ} .
- ▶ GD converges to a local minimum θ_* !!
- lssues in computing gradients: $\nabla_{\theta} J(\theta_{\ell}) = \sum_{i=1}^{N} \nabla_{\theta} J_{i}(\theta_{\ell})$
- ▶ As N = #(S), for Large training data sets:
 - Gradient computation is too slow.
 - Requires large memory

Stochastic Gradient Descent (SGD)

▶ At ℓ -th iterate of GD: choose $i_{\ell} \in (1, N)$ randomly and set:

$$\theta_{\ell+1} = \theta_{\ell} - \eta_{\ell} \nabla_{\theta} J_{i_{\ell}}(\theta_{\ell}),.$$

- Converges (convergence theory based on underlying SDE.)
- ► Fast (per iteration) but has high variance (noisy convergence) !!



Mini-Batch SGD

- ▶ Randomly shuffle training set S into Batches S_j , each of size n.
- ► SGD iteration:

$$\theta_{\ell+1} = \theta_{\ell} - \eta_{\ell} \sum_{j \in \mathcal{S}_j} \nabla_{\theta} J_{i_{\ell}}(\theta_{\ell}).$$

- ▶ With N/n iterations, we stride over the training set to complete 1 Epoch.
- Reshuffle after each epoch.
- ▶ Standard (Full-Batch) GD: n = N
- ▶ SGD: n = 1.

Starting values for the optimizer

- ► Customary to use Random starting value $\theta_0 \in \Theta$.
- Heuristic scaling to minimize variance of the weights.
- Depends on activation functions
- ▶ Different $\theta_0 \Rightarrow SGD$ converges to different local minima.
- Also customary to use Multiple starting values in parallel (Retrainings)

How to assess training success?

- Monitor training loss.
- ► If not low enough (Underfitting):
 - Change Network Size.
 - Train more
 - Change Architecture.
- But Goal is to reduce Generalization error:

$$\mathcal{E}_{G} := \int\limits_{Y} |f(y) - f^{*}(y)|_{p}^{p} d\mu(y).$$

Error on Unseen data.

Validation Set

- ▶ Let $\mathcal{V} \subset Y$ with $\mathcal{V} \cap \mathcal{S} = \Phi$ be Validation test.
- Evaluate Validation loss:

$$\mathcal{E}_{\mathrm{val}} := rac{1}{\#(\mathcal{V})} \sum_{y \in \mathcal{V}} |f(y) - f^*(y)|_p^p.$$

- ▶ #(V) is 5 10% of #(S)
- ► Sacrifice some training data to form Validation set.

Beyond MLP: CNNs

- For Fully connected networks (MLP) very large sizes for Θ if dim(Y) >> 1
- ▶ CIFAR-10 image: Input vector is in \mathbb{R}^{3072} \Rightarrow $\theta \in \mathbb{R}^{M}$ for M >> 1
- ► Induce some sparsity structure on the weight matrices W^k : Discrete convolutions \Rightarrow Convolutional Neural Networks
- ► Discrete Convolutions with fixed Kernel:

$$K_c[m] = \sum_{i=-s}^{s} k_i c[m-i]$$

Convnets

