
AI in the Sciences and Engineering HS 2025:
Lecture 2

Siddhartha Mishra

Computational and Applied Mathematics Laboratory (CamLab)
Seminar for Applied Mathematics (SAM), D-MATH (and),
ETH AI Center (and) Swiss National AI Institute (SNAI) ,

ETH Zürich, Switzerland.

Siddhartha Mishra AISE2025

Key Aim of this Course: Learn Physics modeled by PDEs from
data using Neural Networks

Siddhartha Mishra AISE2025

History: McCollough-Pitts 1943

I A biological Neuron.

Siddhartha Mishra AISE2025

Threshold Logic unit

w1

w2

x1

x2

0

1

Σiwixi + b y

w1 = w2 = 1, b = −2

(a) AND

w1

w2

x1

x2

0

1

Σiwixi + b y

w1 = w2 = 1, b = −1

(b) OR

wx 0

1

w x + b y

w = −1, b = 0

(c) NOT

• Weights are Adjustable but NOT Learned

Siddhartha Mishra AISE2025

The perceptron of Rosenblatt (1957)

w1

w2

wn−1

wn

x1

x2

xn−1

xn

0

1

Σiwixi + b y

I Uses an activation function.

I Weights are learnable

I Capable of classifying data into 2 classes

Siddhartha Mishra AISE2025

Multi-layer Perceptron (MLP) is a direct descendant

Layer 1
(Input Layer)

Layer 2
(Hidden Layer 1)

Layer 3
(Hidden Layer 2)

Layer 4
(Output Layer)

Siddhartha Mishra AISE2025

Deep Neural network: Multi-layer perceptron

X = Z0 Z1 Z2 Z3

A
ct
.
fn

A
ct
.
fn

O
u
t.

fn

Ŷ

Source Layer

Hidden Layer 1 Hidden Layer 2

Output Layer

Siddhartha Mishra AISE2025

MLP: Basic structure

I Given an input z ∈ Rd , MLP outputs a f ∗(z) ∈ Ro :

f ∗(z) = σo � CK � σ � CK−1� σ � C2 � σ � C1(z).

I At the k-th Hidden layer:

zk+1 := σ(Ckz
k)

= σ(W kzk + bk), (W k , zk , bk) ∈
(
Rdk+1×dk ,Rdk ,Rdk+1

)
.

I Weights: W = {W k}k , Biases: B = {bk}k .

I Parameters: θ = {W ,B} ∈ Θ ⊂ R
∑
k

(dk+1)dk+1

.

I Hence, for every θ ∈ Θ, MLP returns f ∗θ (z).

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore
Any many more ...

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore

Any many more ...

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx

tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore

Any many more ...

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx

tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore

I Smooth approximation to
Heaviside func.

I Sigmoidal function – used in
most proofs

I Good for binary
classification

I Not symmetric

Any many more ...

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore

I Smooth approximation to
Heaviside func.

I Sigmoidal function – used in
most proofs

I Good for binary
classification

I Not symmetric

Any many more ...

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore

I Smooth approximation to
Heaviside func.

I Sigmoidal function – used in
most proofs

I Good for binary
classification

I Not symmetric

I Symmetric unlike Logisitic
func.

I Smooth

I Vanishing gradients away
from 0.

Any many more ...

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore
Any many more ...

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore

I Easy to compute

I Reduces vanishing gradient
problem

I Scale invariant

I Issue of dying neurons

Any many more ...

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore
Any many more ...

Siddhartha Mishra AISE2025

Activation functions σ (scalar–applied component wise)

Heaviside

1

0

ν = 1
ν = 10

ν = 100

Logistic fn.
1

1+e−νx tanh(x) = 1−e−2x

1+e−2x

ReLU

max(0, x)

Leaky ReLU
νx

I McCullock-Pitts neuron

I Zero gradient – bad for
backpropagation

I Not used anymore

Any many more ...

Siddhartha Mishra AISE2025

MLP

I Given an input z ∈ Rd , MLP outputs a f ∗(z) ∈ Ro :

f ∗(z) = σo � CK � σ � CK−1� σ � C2 � σ � C1(z).

I At the k-th Hidden layer:

zk+1 := σ(Ckz
k)

= σ(W kzk + bk), (W k , zk , bk) ∈
(
Rdk+1×dk ,Rdk ,Rdk+1

)
.

I Weights: W = {W k}k , Biases: B = {bk}k .

I Parameters: θ = {W ,B} ∈ Θ ⊂ R
∑
k

(dk+1)dk+1

.

I Hence, for every θ ∈ Θ, MLP returns f ∗θ (z).

Siddhartha Mishra AISE2025

Universal Approximation Theorem

I Given any f ∈ C (Y), for any tolerance ε > 0, there exists
parameters θ, such that the DNN f ∗

θ
satisfies,

‖f − f ∗
θ
‖C(Y) ≤ ε

I Proved by Cybenko, Barron, Hornik et al., Mhaskar and many
more in the late 80’s.

I Continuity of the target function can be replaced by
Measurability

I But how to efficiently find the parameter θ or an
approximation θ̂ such that:

‖f − f ∗
θ̂
‖C(Y) << 1.

Siddhartha Mishra AISE2025

Supervised Learning

I Availability of Labelled Data: (yi , fi)

I Input space Y ⊂ Rd

I ∃ an underlying map: f : Y 7→ R
I Training Set: S = {yi ∈ Y }, 1 ≤ i ≤ N
I How to choose training set:

I Random points: yi i.i.d with respect to underlying distribution
µ ∈ Prob(Y).

I Other choices might be necessary in some contexts.

I fi = f (yi) for all yi ∈ S.

Siddhartha Mishra AISE2025

Loss Function

I For all yi ∈ S, Labelled data fi = f (yi).

I For any θ ∈ Θ, Evaluate Neural Network to obtain f ∗θ (yi)

I Loss (Mismatch, Regret) in terms of f (yi)− f ∗θ (yi)

I Popular choice of Loss functions:

J(θ) :=
1

N

N∑
i=1

|f (yi)− f ∗θ (yi)|pp︸ ︷︷ ︸
Ji (θ)

, 1 ≤ p <∞.

I p = 2 ⇒ Least Squares minimization.
I p = 1 ⇒ induces sparsity.

Siddhartha Mishra AISE2025

Training in Supervised Learning

I Solve the Minimization problem:

θ∗ := argmin
θ∈Θ

J(θ)

I Trained Neural network

f ∗(y) = f ∗θ∗(y), ∀y ∈ Y .

Siddhartha Mishra AISE2025

Solving the Minimization problem

I The map θ 7→ J(θ) is Non-convex but differentiable (a.e) !!

I Use the Gradient Descent (GD) method:

θ`+1 = θ` − η`∇θJ(θ`), ∀` ∈ N.

I (Adaptive) Learning rate η`.

I GD converges to a local minimum θ∗ !!

I Issues in computing gradients: ∇θJ(θ`) =
N∑
i=1
∇θJi (θ`)

I As N = #(S), for Large training data sets:
I Gradient computation is too slow.
I Requires large memory

Siddhartha Mishra AISE2025

Stochastic Gradient Descent (SGD)

I At `-th iterate of GD: choose i` ∈ (1,N) randomly and set:

θ`+1 = θ` − η`∇θJi`(θ`), .

I Converges (convergence theory based on underlying SDE.)

I Fast (per iteration) but has high variance (noisy convergence)
!!

Siddhartha Mishra AISE2025

Mini-Batch SGD

I Randomly shuffle training set S into Batches Sj , each of size
n.

I SGD iteration:

θ`+1 = θ` − η`
∑
j∈Sj

∇θJi`(θ`).

I With N/n iterations, we stride over the training set to
complete 1 Epoch.

I Reshuffle after each epoch.

I Standard (Full-Batch) GD: n = N

I SGD: n = 1.

Siddhartha Mishra AISE2025

Starting values for the optimizer

I Customary to use Random starting value θ0 ∈ Θ.

I Heuristic scaling to minimize variance of the weights.

I Depends on activation functions

I Different θ0 ⇒ SGD converges to different local minima.

I Also customary to use Multiple starting values in parallel
(Retrainings)

Siddhartha Mishra AISE2025

How to assess training success ?

I Monitor training loss.
I If not low enough (Underfitting):

I Change Network Size.
I Train more
I Change Architecture.

I But Goal is to reduce Generalization error:

EG :=

∫
Y

|f (y)− f ∗(y)|ppdµ(y).

I Error on Unseen data.

Siddhartha Mishra AISE2025

Validation Set

I Let V ⊂ Y with V ∩ S = Φ be Validation test.

I Evaluate Validation loss:

Eval :=
1

#(V)

∑
y∈V
|f (y)− f ∗(y)|pp.

I #(V) is 5− 10% of #(S)

I Sacrifice some training data to form Validation set.

Siddhartha Mishra AISE2025

Beyond MLP: CNNs

I For Fully connected networks (MLP) – very large sizes for Θ if
dim(Y) >> 1

I CIFAR-10 image: Input vector is in R3072 ⇒ θ ∈ RM for
M >> 1

I Induce some sparsity structure on the weight matrices W k :
Discrete convolutions ⇒ Convolutional Neural Networks

I Discrete Convolutions with fixed Kernel:

Kc [m] =
s∑

i=−s
kic[m − i]

Siddhartha Mishra AISE2025

Convnets

Siddhartha Mishra AISE2025

