AI in the Sciences and Engineering HS 2025: Lecture 4

Siddhartha Mishra

Computational and Applied Mathematics Laboratory (CamLab) Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center (and) Swiss National AI Institute (SNAI), ETH Zürich, Switzerland.

What we have learnt so far ?

- ► AIM: Learn/Solve PDEs using Deep Neural Networks
- ► Use PINNs for that purpose.

PINNs for the PDE $\mathcal{D}(u) = f$

- ▶ For Parameters $\theta \in \Theta$, $u_{\theta} : \mathbb{D} \mapsto \mathbb{R}^m$ is a DNN, with $u_{\theta} \in X^*$
- ▶ Aim: Find $\theta \in \Theta$ such that $u_{\theta} \approx u$ (in suitable sense).
- ► Compute PDE Residual by Automatic Differentiation:

$$\mathcal{R} := \mathcal{R}_{\theta}(y) = \mathcal{D}\left(\mathsf{u}_{\theta}(y)\right) - \mathsf{f}(y), \ y \in \mathbb{D} \quad \mathcal{R}_{\theta} \in Y^*, \quad \forall \theta \in \Theta$$

- ▶ PINNs are minimizers of $\|\mathcal{R}_{\theta}\|_{Y}^{p} \sim \int\limits_{\mathbb{D}} |\mathcal{R}_{\theta}(y)|^{p} dy$
- Replace Integral by Quadrature !
- Let $S = \{y_i\}_{1 \le i \le N}$ be quadrature points in \mathbb{D} , with weights w_i
- ▶ PINN for approximating PDE is defined as $u^* = u_{\theta^*}$ such that

$$\theta^* = \arg\min_{\theta \in \Theta} \sum_{i=1}^{N} w_i |\mathcal{R}_{\theta}(y_i)|^p$$

► Minimize Very high-d Non-Convex loss with ADAM, L-BFGS

Successes I: High-dimensional PDEs

▶ PINNs for the Heat Equation:

Dimension	Training Error	Total Error
1	2.8×10^{-5}	0.0035%
5	0.0002	0.016%
10	0.0003	0.03%
20	0.006	0.79%
50	0.006	1.5%
100	0.004	2.6%

► No Curse of dimensionality !!

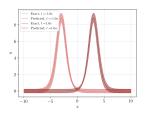
Successes II: Parametric PDEs

Consider the KdV Eqn:

$$u_t + uu_x + u_{xxx} = 0,$$

 $u(0, x, y) = u_0(x, y).$

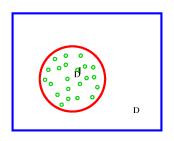
- ▶ $y \in Y \subset \mathbb{R}^6$ Parametrizes Initial conditions.
- ▶ PINN: $(t, x, y) \mapsto u_{\theta}(t, x, y)$
- ▶ Visualizations of Mean + Variance.

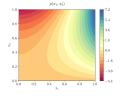


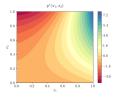
► Error of 0.5%

Success III: Inverse Problems

► Seamless Integration of Data + Physics







Why and When do PINNs work ?

Why do PINNs work for an abstract PDE $\mathcal{D}(u) = f$?

- ▶ PDE solution u, DNN u $_{\theta}$ with parameters $\theta \in \Theta$
- ► AIM is to ensure small Total Error:

$$\mathcal{E}(\theta) := \|\mathbf{u} - \mathbf{u}_{\theta}\|_{p}$$

- PINNs may not have access to samples from Exact Solution u
- On the other hand, PINNs minimize PDE Residual:

$$\mathcal{E}_{G}(\theta) = \|\mathcal{R}_{\theta}\|_{p} = \|\mathcal{D}\left(\mathsf{u}_{\theta}\right) - \mathsf{f}\|_{p}$$

▶ In practice, we only have access to Training Error:

$$\mathcal{E}_{\mathcal{T}}(\theta) = \left(\sum_{i=1}^{N} w_i |\mathcal{R}_{\theta}(y_i)|^p\right)^{\frac{1}{p}}$$

Key Theoretical Questions

Can the training error be made as small as possible?

Does
$$\exists \tilde{\theta} \in \Theta$$
, $\mathcal{E}_{\mathcal{T}}(\tilde{\theta}) < \epsilon$?.

- Does small Training Loss ⇒ small PINN Residual ? i.e.,
- Can we derive a bound of the form ?

$$\mathcal{E}_{G}(\theta) \leq \overline{C}\left(\mathcal{E}_{T}(\theta), N\right) \sim o\left(N^{-1}\right) \quad \forall \theta \in \Theta$$

- Does small PINN Residual ⇒ small Total Error ? i.e.,
- Can we derive a bound of the form:

$$\mathcal{E}(\theta) \leq C\mathcal{E}_{G}(\theta), \quad \forall \theta \in \Theta$$

On bounds on total error in terms of Residuals

- Sufficient Conditions of SM, Molinaro, 2021:
- ▶ Coercivity of the PDE $\mathcal{D}u = f$: for any $u, \bar{u} \in X^*$:

$$\|\mathbf{u} - \bar{\mathbf{u}}\|_{p} \leq C_{pde}(\bar{\mathbf{u}}, \mathbf{u}) \|\mathcal{D}(\bar{\mathbf{u}}) - \mathcal{D}(\mathbf{u})\|_{p}$$

► Coercivity ⇒ Bounds in terms of Residuals as,

$$\begin{split} \mathcal{E}(\theta) &= \|\mathbf{u}_{\theta} - \mathbf{u}\|_{p}, \\ &\leq C_{pde}(\mathbf{u}, \mathbf{u}_{\theta}) \|\mathcal{D}(\mathbf{u}_{\theta}) - \mathcal{D}(\mathbf{u})\|_{p} \quad \text{(Coercivity)}, \\ &\leq C_{pde}(\mathbf{u}, \mathbf{u}_{\theta}) \|\mathcal{D}(\mathbf{u}_{\theta}) - f\|_{p} \quad \text{as } \mathcal{D}(\mathbf{u}) = f, \\ &\leq C_{pde}(\mathbf{u}, \mathbf{u}_{\theta}) \mathcal{E}_{G}(\theta) \quad \text{(Definition of } \mathcal{E}_{G}) \end{split}$$

On Bounds of Residual in terms of Training Error

► Recall PDE Residual:

$$\mathcal{E}_{G}(\theta) = \|\mathcal{R}_{\theta}\|_{p} = \|\mathcal{D}(\mathsf{u}_{\theta}) - \mathsf{f}\|_{p} := \left(\int\limits_{D} |\mathcal{R}_{\theta}(y)|^{p} dy\right)^{\frac{1}{p}}$$

In practice, we only have access to Training Error:

$$\mathcal{E}_{\mathcal{T}}(\theta) = \left(\sum_{i=1}^{N} w_i |\mathcal{R}_{\theta}(y_i)|^p\right)^{\frac{1}{p}}$$

▶ Training Error $\mathcal{E}_{\mathcal{T}}$ is Quadrature Approximation of $\mathcal{E}_{\mathcal{G}}$:

$$\mathcal{E}_G \leq \mathcal{E}_T + C_{quad}(u_{\theta^*})^{\frac{1}{p}} N^{-\frac{\alpha}{p}}$$
 quadrature error,

A Strategy for PINN Error Bounds SM, Molinaro, 2021

▶ Use Coercivity of a given PDE to show that

$$\|u-u_{\theta}\|_{\textbf{p}}\leq \overline{\textbf{C}}(u,u_{\theta})\textbf{E}_{\textbf{G}}(\theta), \quad \forall \theta \in \Theta.$$

Use Quadrature bounds to show that,

$$\mathcal{E}_{G} \leq \mathcal{E}_{T} + C_{quad}(u_{\theta^{*}})^{\frac{1}{p}} N^{-\frac{\alpha}{p}}$$

Prove explicit growth bounds on the constants \overline{C} , C_{quad} in terms of Neural Network architecture and number of collocation points.

Kolmogorov PDEs

► Linear Parabolic PDEs of form:

$$\begin{split} \partial_t u &= \sum_{i=1}^d \mu_i(x) \partial_{x_i} u + \frac{1}{2} \sum_{i,j,k=1}^d \sigma_{ik}(x) \sigma_{kj}(x) \partial_{x_i x_j} u, \\ u|_{\partial D \times (0,T)} &= \Psi(x,t), \quad u(x,0) = \varphi(x) \end{split}$$

- $\blacktriangleright \mu, \sigma$ are Affine
- Examples:
 - Heat Equation: $\mu = 0$, $\sigma = ID$
 - Black-Scholes Equation for Option Pricing:
 - ▶ Interest rate μ , Stock Volatilities β and correlations ρ

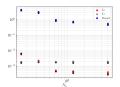
$$u_t = \sum_{i,j=1}^d \beta_i \beta_j \rho_{ij} x_i x_j u_{x_i x_j} + \sum_{j=1}^d \mu x_j u_{x_j}$$

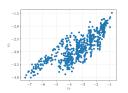
► Note that *d* >> 1 (Very high-dimensional)

Error Bounds: De Ryck, SM, 2021.

- ▶ \exists Tanh PINN \hat{u} of size $\mathcal{O}(\epsilon^{-\alpha(d)})$: $\mathcal{E}_{G,T}(\hat{\theta}) \sim \epsilon$,
- Uses Dynkin's formula to overcome curse of dimensionality.
- ▶ Stability of PDE: $\|u u_{\theta}\|_2 \le C \left(\|\mathcal{R}_{int,\theta}\| + \|\mathcal{R}_{sb,\theta}\|^{\frac{1}{2}}\right)$
- Use Hoeffding's inequality + Lipschitz bounds on u_θ :

$$\mathcal{E}_G^2(\theta) \sim \mathcal{O}\left(\mathcal{E}_T^2(\theta) + \frac{C\left(M, \log(\|W\|)\right)\log(\sqrt{N})}{\sqrt{N}}\right)$$





Numerical Results: (SM, Molinaro, Tanios, 2021)

► Heat Equation:

Dimension	Training Error	Total error
20	0.006	0.79%
50	0.006	1.5%
100	0.004	2.6%

► Black-Scholes type PDE with Uncorrelated Noise:

Dimension	Training Error	Total error
20	0.0016	1.0%
50	0.0031	1.5%
100	0.0031	1.8%

► Heston option-pricing PDE

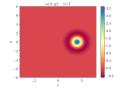
Dimension	Training Error	Total error
20	0.0064	1.0%
50	0.0037	1.3%
100	0.0032	1.4%

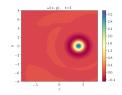
Navier-Stokes Eqns: $u_t + (u \cdot \nabla)u + \nabla p = \nu \Delta u$, div u = 0

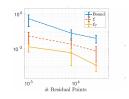
- ► Theory in DeRyck, Jagtap, SM, 2022.
- ► Smooth $u \in H^k$: PINN with size(\hat{u}) $\sim \mathcal{O}(M^{d+1})$: $\mathcal{E}_G(\hat{\theta}) \leq \mathcal{O}(M^{1-k}\log(M))$
- ▶ Use PDE theory to prove for $C = C(\|\text{curl } u\|_{L^{\infty}})$

$$\|u - u_{\theta}\|_{2} \le C \left(\|\mathcal{R}_{int,\theta}\| + \|\mathcal{R}_{tb,\theta}\| + \|\mathcal{R}_{sb,\theta}\|^{\frac{1}{2}} + \|\mathcal{R}_{div,\theta}\|^{\frac{1}{2}} \right)$$

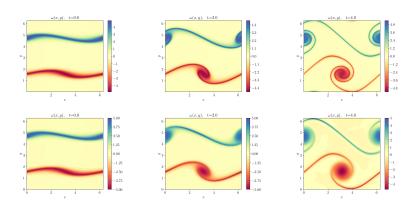
▶ Use Quadrature bounds: $\mathcal{E}_{G}^{2}(\theta) \sim \mathcal{O}\left(\mathcal{E}_{T}^{2}(\theta) + N^{-\alpha}\right)$





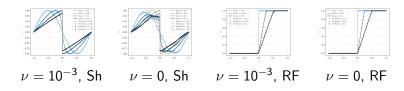


Results for 2-D Double Shear Layer



Viscous Burgers': $u_t + \text{div } f(u) = \nu \Delta u$

- ► Error $\mathcal{E} \leq Ce^{CT} \left(\mathcal{E}_T + C_q N^{-\alpha} \right), C = C \left(\|\nabla u^{\nu}\|_{L^{\infty}} \right)$
- ▶ $\|\nabla u^{\nu}\|_{L^{\infty}} \sim \frac{1}{\sqrt{\nu}}$ ⇒ Error can blow up near shocks !!



ν	ε (Shock)	\mathcal{E} (Rarefaction)
10^{-3}	1.0%	2.2%
10^{-4}	11.2%	1.6%
0	23.1%	1.2%

Alternatives: wPINNs of De Ryck, Molinaro, SM, 2023.

Summary (so far)

- ▶ For generic PDE: $\mathcal{D}(u) = f$
- ► Rigorous Error estimate for PINNs:

$$\|\boldsymbol{u} - \boldsymbol{u}_{\boldsymbol{\theta}}\| \sim \textit{C}_{\mathrm{pde}}\left(\boldsymbol{u}, \boldsymbol{u}_{\boldsymbol{\theta}}\right) \left[\mathcal{E}_{\textit{T}}(\boldsymbol{\theta}) + \textit{C}_{\mathrm{quad}}(\boldsymbol{u}_{\boldsymbol{\theta}})\textit{N}^{-\alpha}\right]$$

Training Error is a blackbox

On the smallness of Training Error

▶ For sufficiently smooth u solving $\mathcal{D}(u) = f$ observe that

$$\epsilon_{\textit{G}}(\theta) = \|\mathcal{D}\left(u_{\theta}\right) - f\|_{\textit{p}} = \|\mathcal{D}\left(u_{\theta}\right) - \mathcal{D}(u)\|_{\textit{p}} \leq \textit{C}\left(u, u_{\theta}\right) \|u - u_{\theta}\|_{\textit{W}^{\textit{s},\textit{p}}}$$

- ▶ Here s depends on the number of derivatives in \mathcal{D} .
- DNN approximation results in Sobolev spaces:
- ► For example in (DeRyck,Lanthaler,SM, 2021) :

$$\exists \hat{\theta} \in \Theta, \quad \|\mathbf{u} - \mathbf{u}_{\hat{\theta}}\|_{W^{s,p}} < \epsilon$$

- smoothness of u ⇒ small PINN Residuals.
- ► Use Quadrature bounds to show that,

$$\mathcal{E}_{\mathcal{T}} \leq \mathcal{E}_{\mathcal{G}} + C_{quad}(u_{\theta^*})^{\frac{1}{p}} N^{-\frac{\alpha}{p}} \sim O(\epsilon), \text{ for } N >> 1,$$

On the smallness of Training Error

▶ For sufficiently smooth u solving $\mathcal{D}(u) = f$ observe that

$$\mathcal{E}_{\textit{G}}(\theta) = \|\mathcal{D}\left(u_{\theta}\right) - f\|_{\textit{p}} = \|\mathcal{D}\left(u_{\theta}\right) - \mathcal{D}(u)\|_{\textit{p}} \leq \textit{C}\left(u, u_{\theta}\right) \|u - u_{\theta}\|_{\textit{W}^{\textit{s},\textit{p}}}$$

- ▶ Here s depends on the number of derivatives in \mathcal{D} .
- DNN approximation results in Sobolev spaces:
- ► For example in (DeRyck,Lanthaler,SM, 2021) :

$$\exists \hat{\theta} \in \Theta, \quad \|\mathbf{u} - \mathbf{u}_{\hat{\theta}}\|_{W^{s,p}} < \epsilon$$

- smoothness of u ⇒ small PINN Residuals.
- Use Quadrature bounds to show that,

$$\mathcal{E}_{\mathcal{T}} \leq \mathcal{E}_{\mathcal{G}} + C_{quad}(u_{\theta^*})^{\frac{1}{p}} N^{-\frac{\alpha}{p}} \sim O(\epsilon), \text{ for } N >> 1,$$

► Can training process reach the Global Minimum?

Theoretical Framework of De Ryck et al 2023

► Gradient Descent with Physics-Informed Loss:

$$\theta_{k+1} = \theta_k - \eta \nabla_{\theta} L, \quad L = \frac{1}{2} \int\limits_{D} |\mathcal{D}(\mathsf{u}(x,\theta) - f(x))|^2 dx.$$

Taylor Expansion:

$$\mathbf{u}(x,\theta_k) = \mathbf{u}(x,\theta_0) + \nabla_{\theta}\mathbf{u}(x,\theta_0)(\theta_k - \theta_0) + \langle H_k\theta_k - \theta_0, \theta_k - \theta_0 \rangle$$

- ► Rewritten GD: $\theta_{k+1} = (I \eta A)\theta_k + \eta(A\theta_0 + C) + \eta \epsilon_k$
- ▶ Gram Matrix: $A_{i,j} = \langle \mathcal{D}\varphi_i, \mathcal{D}\varphi_j \rangle_{L^2}$, $\varphi_i = \partial_{\theta_i} \mathsf{u}(x, \theta_0)$
- ▶ Bias vector: $C_i = \langle \mathcal{D}u(\theta_0) f, \mathcal{D}\varphi_i \rangle$

Dynamics of simplified GD

▶ if $\epsilon_k \sim \mathcal{O}(\epsilon)$, then *GD* can be approximated by simpGD:

$$\theta_{k+1} = (I - \eta A)\theta_k + \eta (A\theta_0 + \mathcal{C})$$

▶ Small error terms correspond to the NTK regime for u_{θ} , $\mathcal{D}u_{\theta}$:

$$TKf_{\theta}(x, y) = \nabla_{\theta} f_{\theta}(x)^{\top} \nabla_{\theta} f(y).$$

For simpGD, easy to show that

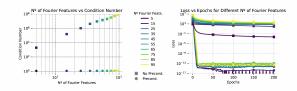
$$\| heta_k - heta^*\|_2 \leq \left(1 - rac{c}{\kappa(\mathcal{A})}
ight)^k \| heta_0 - heta^*\|_2, \quad extstyle N(\delta) \sim \mathcal{O}(\kappa(\mathcal{A})\log(1/\delta))$$

• Key role played by Condition Number: $\kappa(\mathcal{A}) = \frac{\lambda_{\max}(\mathcal{A})}{\lambda_{\min}(\mathcal{A})}$

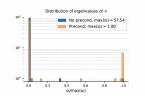
More on Simp GD

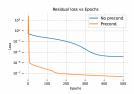
- Introduce $A = \mathcal{D}^*\mathcal{D}$, the Hermitian-Square of \mathcal{D} .
- ▶ Under suitable assumptions, $\kappa(A) = \kappa(A \odot TT^*)$,
- ► $T: v \mapsto \sum_k v_k \varphi_k$ connects the vector and function spaces.
- ▶ Ex: if $\mathcal{D} = -\Delta$, then $\mathcal{A} = \Delta^2$
- in general $\kappa(A)$ can be very high.
- Key difference in Supervised Learning and Physics-Informed learning
- ▶ Need to precondition $\mathcal{D}^*\mathcal{D}$.
- Most techniques to accelerate PINNs training can be viewed as Preconditioning

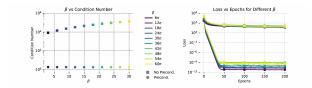
1-D Possion: $-u'' = -k^2 \sin(kx)$

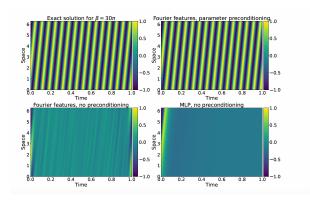


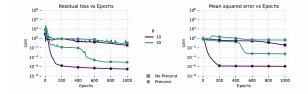
1-D Possion: $-u'' = -k^2 \sin(kx)$

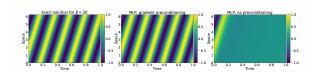








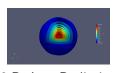




Preconditioning Techniques

- Adjusting balance between Data vs. Physics
- ► Hard Boundary Conditions (Lagaris et. al)
- Casual Learning (Wang, et. al)
- Second-order Optimizers (Zeinhofer, et. al)
- Multi-stage Neural Networks (Lai et. al)

Radiative Transfer



2-D, Intensity

2-D, Boundary

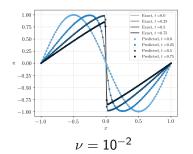
6-D, Inc. Radiation

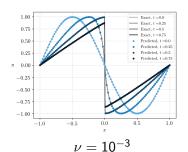
6-D, Radial flux

Dimension	Network Size	Error	Training Time
2	24 × 8	0.3%	57 min
6	20 × 8	2.1%	66 min

Results for 1-D Burgers'

• Sobol points, $N_{int} = 8192$, $N_{tb} = N_{sb} = 256$, Depth 8, Width 20.

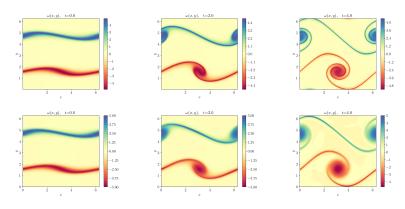




Viscosity	Training Error	Total error
10^{-2}	0.0005	1.0%
10^{-3}	0.0008	1.2%

► Finite Difference (0.1 secs) vs. PINNs (5 min)

Results for 2-D Navier-Stokes



► Spectral Method (1 secs) vs. PINNs (30-60 min)

Summary of PINNs.

- PINNs are alternatives to PDE Solvers.
- Work well for problems with "easy" solutions.
- Don't work yet for complex problems.
- Whats the alternative ?