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What we have learnt so far ?

» AIM: Learn/Solve PDEs using Deep Neural Networks
» Use PINNs for that purpose.
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PINNs for the PDE D(u) = f

>
>
>

v

>

For Parameters 8 € ©, ug : D +— R™ is a DNN, with uy € X*
Aim: Find 6 € © such that up ~ u (in suitable sense).
Compute PDE Residual by Automatic Differentiation:

R:=Ro(y) =D (up(y)) —f(y), yeD RgeY*, VHecO
PINNs are minimizers of | Rg||5, ~ [ |Ro(y)|” dy
D

Replace Integral by Quadrature !
Let S = {yi}1<i<n be quadrature points in D, with weights w;
PINN for approximating PDE is defined as u* = ug~ such that

N
o — i 1R ()P
arggnelgiz_gwll o(i)]

Minimize Very high-d Non-Convex loss with ADAM, L-BFGS
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Successes |: High-dimensional PDEs

» PINNs for the Heat Equation:
Dimension | Training Error | Total Error

1 2.8 x107° 0.0035%

5 0.0002 0.016%

10 0.0003 0.03%

20 0.006 0.79%

50 0.006 1.5%

100 0.004 2.6%

» No Curse of dimensionality !!
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Successes |l: Parametric PDEs

» Consider the KdV Egn:

Ut + Uty + Uxx = 0,
u(0,x,y) = uo(x,y).
» y € Y C R® Parametrizes Initial conditions.

> PINN: (t,x,y) — ug(t,x,y)

» Visualizations of Mean + Variance.

» Error of 0.5%



Success |l Inverse Problems

» Seamless Integration of Data + Physics
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Why and When do PINNs work ?
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Why do PINNs work for an abstract PDE D(u) = 7

» PDE solution u, DNN ug with parameters 6 € ©

» AIM is to ensure small Total Error:
E(0) == [lu —ugllp

» PINNs may not have access to samples from Exact Solution u
» On the other hand, PINNs minimize PDE Residual;

€6(0) = Rollp = D (ug) — fll,

» In practice, we only have access to Training Error:

v !
er(6) = (Z w,-me(y,-np)

i=1
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Key Theoretical Questions

» Can the training error be made as small as possible ?
Does 30 € ©, &7(f) <e?.

» Does small Training Loss = small PINN Residual ? i.e.,

» Can we derive a bound of the form ?
€c(0) < C(ET(0),N)~o(N7Y) Woeo

» Does small PINN Residual = small Total Error 7 i.e.,

» Can we derive a bound of the form:

£(0) < Ceg(h), V€O
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On bounds on total error in terms of Residuals

» Sufficient Conditions of SM, Molinaro, 2021:
» Coercivity of the PDE Du = f: for any u,u € X*:

Ju—1llp < Cpae(T, u)D(T) — D(u)llp
» Coercivity = Bounds in terms of Residuals as,

E(0) = llug — ul[p,
< Cpde(u,up)||D(ug) — D(u)||p (Coercivity),
< Cpde(u,up)||[D(ug) — fllp as D(u) = f,
< Cpde(u,up)€g(0) (Definition of €g)
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On Bounds of Residual in terms of Training Error

» Recall PDE Residual:

T =

£6(0) = |Rollp = D (ug) — fllp = / R (y) Py
D

» In practice, we only have access to Training Error:

N ,
Er(0) = (Z W,-|339(y,)|f’>

i=1

» Training Error E7 is Quadrature Approximation of Eg:

1«
€6 < &7+ Cquad(up«)p N7 quadrature error,
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A Strategy for PINN Error Bounds , 2021

» Use Coercivity of a given PDE to show that
lu—ugllp < C(u,up)éc(8), VO€®O.
» Use Quadrature bounds to show that,
€6 < ET + Cauag(uge)P N7

» Prove explicit growth bounds on the constants C, Cguad in
terms of Neural Network architecture and number of
collocation points.
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Kolmogorov PDEs

» Linear Parabolic PDEs of form:

d

1
Oru = Z wi(x)0xu + 5 Z Tk (X) o ki (X)Ox;x; U,

ij,k=1
u|8D><(0,T) = W(X7 t)7 U(Xu 0) = SO(X)

> u, 0 are Affine
> Examples:
» Heat Equation: u =0, 0 =ID
» Black-Scholes Equation for Option Pricing:
> Interest rate u, Stock Volatilities 8 and correlations p

d d
up = Z BiBjpijXiX;jUxx; + Z [X; Uy
ij=1 =1
» Note that d >> 1 (Very high-dimensional)



Error Bounds: , 2021.

» 3 Tanh PINN & of size O(e=): ¢ 7() ~

» Uses Dynkin's formula to overcome curse of dimensionality.
> Stability of PDE: [u — tgll2 < € ([Rinesll + |Renoll?)

> Use Hoeffding's inequality + Lipschitz bounds on ug:

£2() ~ O (8% (01 C(M:log(IW1)) |og(m)>

VN
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Numerical Results: (

» Heat Equation:

. 2021)

» Black-Scholes type PD

» Heston option-pricing PDE

Dimension | Training Error | Total error
20 0.006 0.79%
50 0.006 1.5%
100 0.004 2.6%
E with Uncorrelated Noise:
Dimension | Training Error | Total error
20 0.0016 1.0%
50 0.0031 1.5%
100 0.0031 1.8%
Dimension | Training Error | Total error
20 0.0064 1.0%
50 0.0037 1.3%
100 0.0032 1.4%
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Navier-Stokes Eqns: u; + (u-V)u+ Vp = vAu, divu =0

» Theory in DeRyck, Jagtap, SM, 2022.

> Smooth u € H*: PINN with size(d) ~ O (M9T1):
€6(0) < O (M**log(M))

» Use PDE theory to prove for C = C (||curl u|;)

1
2 + [|Raiv 0]

| + ([ Rsb,0

lu = pllz < € (IRl + [ Reo

)

» Use Quadrature bounds: 82G(9) ~ 0 (82-,-(9) + N_‘")
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Results for 2-D Double Shear Layer

‘‘‘‘‘
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Viscous Burgers': u; + div f(u) = vAu

> Error & < CeCT (€7 + CGN~), C = C(||Vu”|1)

» ||[Vu”||i ~ == = Error can blow up near shocks !!

NG

v =103, Sh v =0, Sh v=103 RF v =0,RF

v | € (Shock) | € (Rarefaction)
103 1.0% 2.2%
1074 | 11.2% 1.6%

0 23.1% 1.2%

e Alternatives: wPINNs of De Ryck, Molinaro, SM, 2023.
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Summary (so far)

» For generic PDE: D(u) = f
» Rigorous Error estimate for PINNs:

”U — u9H ~ dee (u7 UQ) [ET(Q) + Cquad(UQ)Nia]

» Training Error is a blackbox
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On the smallness of Training Error

» For sufficiently smooth u solving D(u) = f observe that
€6(0) = D (ug)—fllp = ID (us)=D(u)lp < C(u, up) [[u—us|[wsr

» Here s depends on the number of derivatives in D.

v

DNN approximation results in Sobolev spaces:
» For example in (DeRyck,Lanthaler,SM, 2021) :

e, |u—uslws <e

v

smoothness of u = small PINN Residuals.
» Use Quadrature bounds to show that,

&1 < €6 + Couad(g-)?N™5 ~ O(c), for N >> 1,
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On the smallness of Training Error

» For sufficiently smooth u solving D(u) = f observe that
€6(0) = D (ug)—fllp = ID (us)=D(u)lp < C(u, up) [[u—us|[wsr

» Here s depends on the number of derivatives in D.

v

DNN approximation results in Sobolev spaces:
» For example in (DeRyck,Lanthaler,SM, 2021) :

e, |u—uslws <e

v

smoothness of u = small PINN Residuals.
» Use Quadrature bounds to show that,

&1 < €6 + Couad(g-)?N™5 ~ O(c), for N >> 1,

» Can training process reach the Global Minimum 7
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Theoretical Framework of et al 2023

» Gradient Descent with Physics-Informed Loss:

1
s = O~ Vol L= / ID(u(x, 0) — £(x)Pdx.
D

» Taylor Expansion:
u(x,@k) = U(X, 90)+V9U(X, (90)(9k—00)—|—<Hk9k—90,9k—90>

» Rewritten GD: 61 = (I — nA)0k + n(Ab + C) + nex
Gram Matrix: A; j = (Dei, Dpj) 2, pi = Op,u(x, bo)
» Bias vector: C; = (Du(y) — f,Dyp;)

v
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Dynamics of simplified GD

» if ex ~ O(e), then GD can be approximated by simpGD:
Ok+1 = (I = nA)Ok + n(Abo + €)
» Small error terms correspond to the NTK regime for ug, Duy:
TKfy(x,y) = Vofy(x) " Vof(y).

» For simpGD, easy to show that

k
18k=0"]12 < (1—@) 10062, N(3) ~ O(r(A) log(1/5))

Amax (A)

» Key role played by Condition Number: x(A) = pwea)
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More on Simp GD

Introduce A = D*D, the Hermitian-Square of D.

Under suitable assumptions, x(A) =k (A ©® TT*),

T :v Y, Vkpk connects the vector and function spaces.
Ex: if D= —A, then A = A2

in general xk(A) can be very high.

vVvyvyVvVvyypy

Key difference in Supervised Learning and Physics-Informed
learning

Need to precondition D*D.

vy

Most techniques to accelerate PINNs training can be viewed
as Preconditioning
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1-D Possion: —u

, e of Fourier Features vs Condition Number 1055 vs Epochs for Different NS of Fourier Features
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1-D Possion: —u

Distribution of eigenvalues of 4 Residual loss vs Epochs
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1-D Advection: u; + Buy

1ot B vs Condition Number Loss vs Epochs for Different §
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1-D Advection: u; + fu, =0

Exact solution for 8 = 30 10 Fourier feature: rameter preconditionin
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1-D Advection: u; + Buy

Mean squared error vs Epochs

Residual loss vs Epochs
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1-D Advection: u; + fu, =0

space
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Preconditioning Techniques

Adjusting balance between Data vs. Physics
Hard Boundary Conditions (Lagaris et. al)
Casual Learning (Wang, et. al)

Second-order Optimizers (Zeinhofer, et. al)

vVvyYyyvyy

Multi-stage Neural Networks (Lai et. al)
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Radiative Transfer

2-D, Inten5|ty 2-D, Boundary 6-D, Inc. Radiation 6-D, Radial flux

Dimension | Network Size | Error | Training Time
2 24 x 8 0.3% 57 min
6 20 x 8 2.1% 66 min
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Results for 1-D Burgers'

e Sobol points, Nj,; = 8192, Ny, = Nsy = 256, Depth 8, Width 20.
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- T

v =102 v =103
Viscosity | Training Error | Total error
102 0.0005 1.0%
1073 0.0008 1.2%

» Finite Difference (0.1 secs) vs. PINNs (5 min)

Siddhartha Mishra AISE2025



Results for 2-D Navier-Stokes

‘‘‘‘‘

» Spectral Method (1 secs) vs. PINNs (30-60 min)
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Summary of PINNs.

» PINNs are alternatives to PDE Solvers.

> Work well for problems with "easy” solutions.
» Don't work yet for complex problems.

» Whats the alternative ?
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