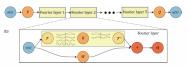
AI in the Sciences and Engineering HS 2025: Lecture 7

Siddhartha Mishra

Computational and Applied Mathematics Laboratory (CamLab) Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center (and) Swiss National AI Institute (SNAI), ETH Zürich, Switzerland.

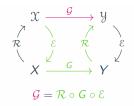
What we have learnt so far ?

- AIM: Learn PDEs using Deep Neural Networks
- Operator Learning: Learn the PDE Solution Operator from data.
- Discretize then Learn (Sample-CNN-Interpolate) did not generalize across grid resolutions.
- Learn then Discretize with Neural Operators.
- ► FNO is a prominent example.



- ► FNO also does not generalize across grid resolutions.
- ► Analyzed through the prism of RENOs

ReNO



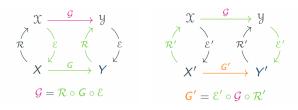
- ▶ Discretize, then Learn ⇔ Learn, then Discretize
- ► Following Bartolucci et al SM, 2023
- ▶ Aliasing error: $\varepsilon(\mathfrak{G}, G) = \mathfrak{G} \mathfrak{R} \circ G \circ \mathcal{E}$
- Representation Equivalent Neural Operator alias ReNO:

$$\varepsilon(\mathfrak{G},G)\equiv 0.$$

▶ Concept is instantiated Layerwise: $\mathcal{G} = \mathcal{G}_L \circ \cdots \mathcal{G}_\ell \cdots \mathcal{G}_1$:

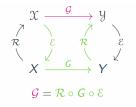
$$g_{\ell} - \Re \circ G_{\ell} \circ \mathcal{E}$$

A ReNO on different Grids



- A Natural change of representation (Grid) Formula:
- As $\varepsilon(\mathfrak{G}, G) \equiv 0 \equiv \varepsilon(\mathfrak{G}, G')$.
- ► Aliasing ⇒ Discrepancies between Resolutions !!

A Concrete Example: 1-D on a Regular Grid



- \blacktriangleright $\mathfrak{X}, \mathfrak{Y}$ are Bandlimited Functions: i.e., supp $\hat{u} \subset [-\Omega, \Omega]$
- ▶ Encoding is Pointwise evaluation: $\mathcal{E}(u) = \{u(x_j)\}_{j=1}^n$
- ► Reconstruction in terms of sinc basis:

$$\Re(v)(x) = \sum_{j=1}^{n} v_j \operatorname{sinc}(x - x_j)$$

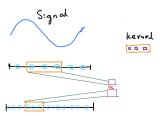
- Nyquist-Shannon \Rightarrow bijection between \mathcal{X}, X on sufficiently dense grid.
- ► Classical Aliasing Error: $\varepsilon(\mathfrak{G}, G) = \mathfrak{G} \mathfrak{R} \circ G \circ \mathcal{E}$

CNNs are not ReNOs!

CNNs rely on Discrete Convolutions with fixed Kernel:

$$K_c[m] = \sum_{i=-s}^{s} k_i c[m-i]$$

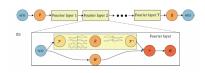
Pointwise evaluations with Sinc basis



Easy to check that CNNs are Resolution dependent as:

$$g' \neq \mathcal{E}' \circ \mathcal{R} \circ \mathcal{G} \circ \mathcal{E} \circ \mathcal{R}'$$

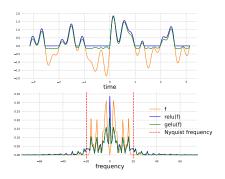
Are FNOs ReNOs?



- lacktriangle Convolution in Fourier space \mathcal{K} + Nonlinearity σ
- \triangleright K is ReNO wrt Periodic Bandlimited functions \mathcal{P}_K :

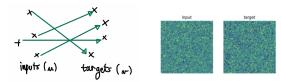
What about activations?

- Nonlinear activation σ can break bandlimits: $\sigma(f) \notin \mathcal{P}_K$
- ► FNOs are not necessarily ReNOs!!

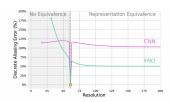


A Synthetic Example: Random Assignment

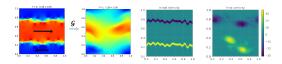
► The underlying Operator:



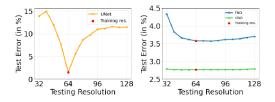
► Errors:



A Practical Example



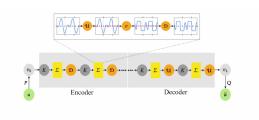
► FNO Results:



► Challenge: Design a ReNO

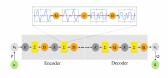
Convolutions Strike Back!!

Convolutional Neural Operators (CNOs) of Raonic, SM et al, 2023.



- Operator between Band-Limited Functions
- Building Blocks:
- ► Lifting operator: *P*
- ► Projection operator: *Q*

CNO Key Building Block I



- ► Use Continuous Convolutions on Bandlimited functions
- Convolution Kernel is still Discrete !!
- Convolution operator is a ReNO.

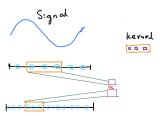
$$\begin{array}{ccc} \mathcal{B}_w & \stackrel{\mathcal{K}_w}{\longrightarrow} \mathcal{B}_w \\ T_{\Psi_w} & & \downarrow T_{\Psi_u}^* \\ \ell^2(\mathbb{Z}^2) & \longrightarrow \ell^2(\mathbb{Z}^2) \end{array}$$

Contrast with CNNs

CNNs rely on Discrete Convolutions with fixed Kernel:

$$K_c[m] = \sum_{i=-s}^{s} k_i c[m-i]$$

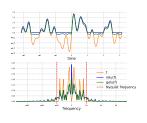
Pointwise evaluations with Sinc basis

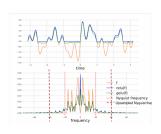


► Easy to check that CNNs are Resolution dependent as:

$$g' \neq \mathcal{E}' \circ \mathcal{R} \circ \mathcal{G} \circ \mathcal{E} \circ \mathcal{R}'$$

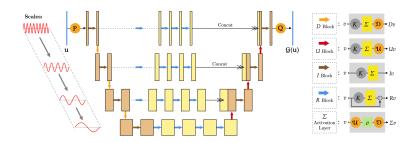
CNO Key Building Block II: Activation Function?





- ▶ Apply Activation as $\Sigma : B_w \mapsto B_w$ with $\Sigma = \mathcal{D}_{\bar{w},w} \circ \sigma \circ \mathcal{U}_{w,\bar{w}}$
- ▶ Upsampling: $\mathcal{U}_{w,\bar{w}}f = f$ with $w < \bar{w}$
- ▶ Downsampling: $\mathcal{D}_{\bar{w},w}f(x) = \left(\frac{\bar{w}}{w}\right)^d \int\limits_{D} \operatorname{sinc}(2\bar{w}(x-y))f(y)dy$
- ightharpoonup Activation is a ReNO if $\bar{w} >> w$:

CNO Architecture in Practice



- ► CNO instantiated as a modified Operator UNet
- ▶ Built for multiscale information processing

CNO properties

- CNO is a ReNO by construction.
- Universal Approximation Theorem:
- ► CNOs approximate any Continuous + operators $\mathcal{G}: H^r \mapsto H^s$
- ▶ Proof relies on building $\mathcal{G} \approx \mathcal{G}^* : \mathcal{B}_w \mapsto \mathcal{B}_{w'}$

$$\mathcal{B}_{w} \xrightarrow{\mathcal{G}^{*}} \mathcal{B}_{w'},$$

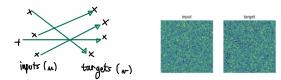
$$\downarrow^{T_{\Psi_{w}}^{*}} \xrightarrow{T_{\Psi_{w'}}} \uparrow$$

$$\ell^{2}(\mathbb{Z}^{2}) \xrightarrow{\mathfrak{g}_{\Psi_{w},\Psi_{w'}}} \ell^{2}(\mathbb{Z}^{2})$$

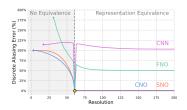
- Efficient PyTorch implementation with CUDA kernels.
- Code available on https://github.com/bogdanraonic3/ConvolutionalNeuralOperator.git

A Synthetic Example: Random Assignment

► The underlying Operator:

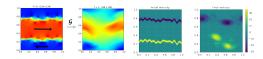


Errors:

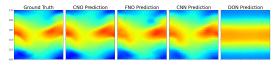


Ex 1: Navier-Stokes Eqns.

Operator:



► Comparison:



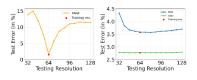
► Test Errors:

Model FFNN UNet DeepONet FNO CNO

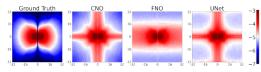
Error 8.05% 3.54% 11.64% 3.93% 3.01%

Further Results

► Resolution Dependence:

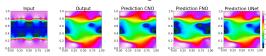


Spectral Behavior: log spectra

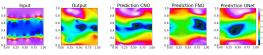


Out-of-Distribution Generalization or Zero-shot Learning

► Results for In-Distribution Testing:



Results for Out-of-Distribution Testing:

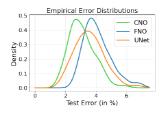


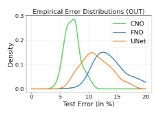
Test Errors:

Model	FFNN	UNet	DeepONet	FNO	CNO
In	8.05%	3.54%	11.64%	3.93%	3.01%
Out	16.12%	10.93%	15.05%	13.45%	7.06%

▶ RunTime: 10^{-1} s on 100^2 grid for AzeBan vs 10^{-4} s for CNO

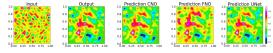
Success is a histogram, not a point !!



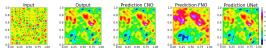


Ex II: Poisson Eqn

- ▶ PDE: $-\Delta u = f$, Operator: $S: f \mapsto u$.
- ▶ Data: $f \sim \sum_{i,j=1}^K \frac{a_{ij}}{(i^2+j^2)^{\alpha}} \sin(i\pi x) \sin(j\pi y)$, $a_{ij} \sim \mathcal{U}[-1,1]$
- ▶ Results for In-Distribution Testing: K = 16



Results for Out-of-Distribution Testing: K = 20

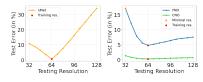


► Test Errors:

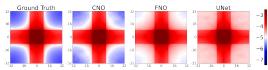
I CSL LII	JI J.				
Model	FFNN	UNet	DeepONet	FNO	CNO
ln	5.74%	0.71%	12.92%	4.78%	0.23%
Out	5.35%	1.27%	9.15%	8.89%	0.27%

Further Results

► Resolution Dependence:

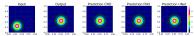


► Spectral Behavior: log spectra

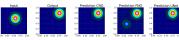


Ex 3: Transport

Results for In-Distribution Testing:



Results for Out-of-Distribution Testing:



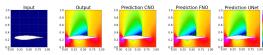
► Test Errors:

Model	FFNN	UNet	DeepONet	FNO	CNO
In	7.09%	0.49%	1.14%	0.40%	0.30%
Out	650.57%	1.28%	157.22%	13.83%	0.47%

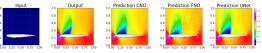
FFNN DeepONet

Ex 4: Compressible Euler Eqns

Results for In-Distribution Testing:



Results for Out-of-Distribution Testing:



Test Errors:

Model	FFNN	UNet	DeepONet	FNO	CNO
In	0.78%	0.38%	1.93%	0.47%	0.35%
Out	1.34%	0.76%	2.88%	0.85%	0.62%

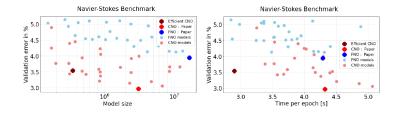
► RunTime: 10²s for NuwTun vs 10⁻⁴s for CNO

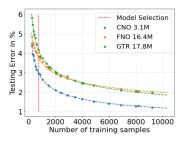
Similar Performance across the board !!

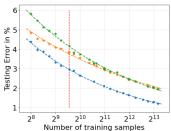
Extensive Empirical evaluation on RPB benchmarks.

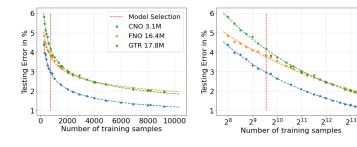
	In/Out	FFNN	GT	UNet	ResNet	DON	FNO	CNO
Poisson	In	5.74%	2.77%	0.71%	0.43%	12.92%	4.98%	0.21%
Equation	Out	5.35%	2.84%	1.27%	1.10%	9.15%	7.05%	0.27%
Wave	In	2.51%	1,44%	1.51%	0.79%	2.26%	1.02%	0.63%
Equation	Out	3.01%	1.79%	2.03%	1.36%	2.83%	1.77%	1.17%
Smooth	In	7.09%	0.98%	0.49%	0.39%	1.14%	0.28%	0.24%
Transport	Out	650.6%	875.4%	1.28%	0.96%	157.2%	3.90%	0.46%
Discontinuous	In	13.0%	1.55%	1.31%	1.01%	5.78%	1.15%	1.01%
Transport	Out	257.3%	22691.1%	1.35%	1.16%	117.1%	2.89%	1.09%
Allen-Cahn	In	18.27%	0.77%	0.82%	1.40%	13.63%	0.28%	0.54%
Equation	Out	46.93%	2.90%	2.18%	3.74%	19.86%	1.10%	2.23%
Navier-Stokes	In	8.05%	4.14%	3.54%	3.69%	11.64%	3.57%	2.76%
Equations	Out	16.12%	11.09%	10.93%	9.68%	15.05%	9.58%	7.04%
Darcy	In	2.14%	0.86%	0.54%	0.42%	1.13%	0.80%	0.38%
Flow	Out	2.23%	1.17%	0.64%	0.60%	1.61%	1.11%	0.50%
Compressible	In	0.78%	2.09%	0.38%	1.70%	1.93%	0.44%	0.35%
Euler	Out	1.34%	2.94%	0.76%	2.06%	2.88%	0.69%	0.59%

Computational Efficiency of CNO

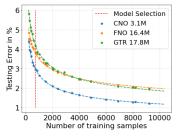


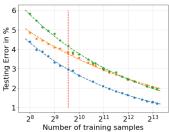




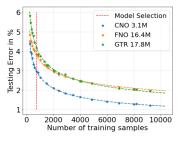


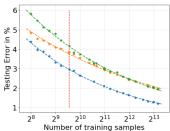
► Success is a curve, not a point !!



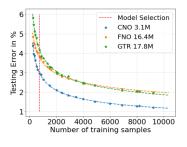


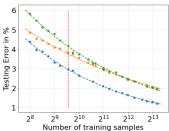
- Success is a curve, not a point !!
- ▶ Models Scale with sample size: $\mathcal{E} \sim N^{-\alpha}$ but with α small
- ► Theory: Lanthaler, SM, Karniadakis, De Ryck, SM,



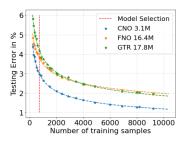


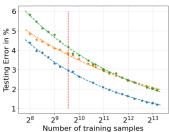
- Success is a curve, not a point !!
- ▶ Models Scale with sample size: $\mathcal{E} \sim N^{-\alpha}$ but with α small
- ► Theory: Lanthaler, SM, Karniadakis, De Ryck, SM,
- ▶ ML models require Big Data: $\mathcal{O}(10^3) \mathcal{O}(10^4)$ training samples per Task
- Very Difficult to obtain Data for PDEs.





- Success is a curve, not a point !!
- ▶ Models Scale with sample size: $\mathcal{E} \sim N^{-\alpha}$ but with α small
- ► Theory: Lanthaler, SM, Karniadakis, De Ryck, SM,
- ▶ ML models require Big Data: $\mathcal{O}(10^3) \mathcal{O}(10^4)$ training samples per Task
- Very Difficult to obtain Data for PDEs.
- ► Can models Scale better ?





- Success is a curve, not a point !!
- ▶ Models Scale with sample size: $\mathcal{E} \sim N^{-\alpha}$ but with α small
- ► Theory: Lanthaler, SM, Karniadakis, De Ryck, SM,
- ▶ ML models require Big Data: $\mathcal{O}(10^3) \mathcal{O}(10^4)$ training samples per Task
- Very Difficult to obtain Data for PDEs.
- ► Can models Scale better ?
- ► What about Nonlinear Kernels?

