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ETH Zürich, Switzerland.

Siddhartha Mishra AISE2025



What we have learnt so far ?

I AIM: Learn PDEs using Deep Neural Networks

I Operator Learning: Learn the PDE Solution Operator from
data.

I Discretize then Learn (Sample-CNN-Interpolate) did not
generalize across grid resolutions.

I Learn then Discretize with Neural Operators.

I FNO is a prominent example.

I FNO also does not generalize across grid resolutions.

I Analyzed through the prism of RENOs
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ReNO

I Discretize, then Learn ⇔ Learn, then Discretize

I Following Bartolucci et al SM, 2023

I Aliasing error: ε(G,G ) = G− R ◦ G ◦ E
I Representation Equivalent Neural Operator alias ReNO:

ε(G,G ) ≡ 0.

I Concept is instantiated Layerwise: G = GL ◦ · · ·G` · · ·G1:

G` − R ◦ G` ◦ E
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A ReNO on different Grids

I A Natural change of representation (Grid) Formula:

I As ε(G,G ) ≡ 0 ≡ ε(G,G ′).

I Aliasing ⇒ Discrepancies between Resolutions !!
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A Concrete Example: 1-D on a Regular Grid

I X,Y are Bandlimited Functions: i.e., supp û ⊂ [−Ω,Ω]

I Encoding is Pointwise evaluation: E(u) = {u(xj)}nj=1

I Reconstruction in terms of sinc basis:

R(v)(x) =
n∑

j=1

vjsinc (x − xj)

I Nyquist-Shannon ⇒ bijection between X,X on sufficiently
dense grid.

I Classical Aliasing Error: ε(G,G ) = G− R ◦ G ◦ E
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CNNs are not ReNOs !

I CNNs rely on Discrete Convolutions with fixed Kernel:

Kc [m] =
s∑

i=−s
kic[m − i ]

I Pointwise evaluations with Sinc basis

I Easy to check that CNNs are Resolution dependent as:

G′ 6= E′ ◦ R ◦ G ◦ E ◦ R′
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Are FNOs ReNOs ?

I Convolution in Fourier space K + Nonlinearity σ

I K is ReNO wrt Periodic Bandlimited functions PK :
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What about activations ?

I Nonlinear activation σ can break bandlimits: σ(f ) /∈ PK
I FNOs are not necessarily ReNOs !!
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A Synthetic Example: Random Assignment

I The underlying Operator:

I Errors:
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A Practical Example

I FNO Results:

I Challenge: Design a ReNO
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Convolutions Strike Back !!

I Convolutional Neural Operators (CNOs) of Raonic, SM et al,
2023.

I Operator between Band-Limited Functions

I Building Blocks:

I Lifting operator: P

I Projection operator: Q
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CNO Key Building Block I

I Use Continuous Convolutions on Bandlimited functions

I Convolution Kernel is still Discrete !!

I Convolution operator is a ReNO.
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Contrast with CNNs

I CNNs rely on Discrete Convolutions with fixed Kernel:

Kc [m] =
s∑

i=−s
kic[m − i ]

I Pointwise evaluations with Sinc basis

I Easy to check that CNNs are Resolution dependent as:

G′ 6= E′ ◦ R ◦ G ◦ E ◦ R′
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CNO Key Building Block II: Activation Function ?
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I Apply Activation as Σ : Bw 7→ Bw with Σ = Dw̄ ,w ◦ σ ◦ Uw ,w̄

I Upsampling: Uw ,w̄ f = f with w < w̄

I Downsampling: Dw̄ ,w f (x) =
(
w̄
w

)d ∫
D

sinc(2w̄(x − y))f (y)dy

I Activation is a ReNO if w̄ >> w :
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CNO Architecture in Practice

I CNO instantiated as a modified Operator UNet

I Built for multiscale information processing
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CNO properties

I CNO is a ReNO by construction.

I Universal Approximation Theorem:

I CNOs approximate any Continuous + operators G : H r 7→ Hs

I Proof relies on building G ≈ G∗ : Bw 7→ Bw ′

I Efficient PyTorch implementation with CUDA kernels.

I Code available on
https://github.com/bogdanraonic3/ConvolutionalNeuralOperator.git
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A Synthetic Example: Random Assignment

I The underlying Operator:

I Errors:
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Ex 1: Navier-Stokes Eqns.

I Operator:

I Comparison:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO
Error 8.05% 3.54% 11.64% 3.93% 3.01%
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Further Results

I Resolution Dependence:

I Spectral Behavior: log spectra
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Out-of-Distribution Generalization or Zero-shot Learning

I Results for In-Distribution Testing:

I Results for Out-of-Distribution Testing:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 8.05% 3.54% 11.64% 3.93% 3.01%
Out 16.12% 10.93% 15.05% 13.45% 7.06%

I RunTime: 10−1s on 1002 grid for AzeBan vs 10−4s for CNO
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Success is a histogram, not a point !!
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Ex II: Poisson Eqn

I PDE: −∆u = f , Operator: S : f 7→ u.

I Data: f ∼
∑K

i ,j=1
aij

(i2+j2)α
sin(iπx) sin(jπy), aij ∼ U [−1, 1]

I Results for In-Distribution Testing: K = 16

I Results for Out-of-Distribution Testing: K = 20

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 5.74% 0.71% 12.92% 4.78% 0.23%
Out 5.35% 1.27% 9.15% 8.89% 0.27%
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Further Results

I Resolution Dependence:

I Spectral Behavior: log spectra
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Ex 3: Transport

I Results for In-Distribution Testing:

I Results for Out-of-Distribution Testing:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 7.09% 0.49% 1.14% 0.40% 0.30%
Out 650.57% 1.28% 157.22% 13.83% 0.47%

FFNN DeepONet
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Ex 4: Compressible Euler Eqns

I Results for In-Distribution Testing:

I Results for Out-of-Distribution Testing:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 0.78% 0.38% 1.93% 0.47% 0.35%
Out 1.34% 0.76% 2.88% 0.85% 0.62%

I RunTime: 102s for NuwTun vs 10−4s for CNO
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Similar Performance across the board !!

I Extensive Empirical evaluation on RPB benchmarks.
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Computational Efficiency of CNO
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How does CNO/FNO Scale ?

I Success is a curve, not a point !!
I Models Scale with sample size: E ∼ N−α but with α small
I Theory: Lanthaler, SM, Karniadakis, De Ryck, SM,
I ML models require Big Data: O(103)−O(104) training

samples per Task
I Very Difficult to obtain Data for PDEs.
I Can models Scale better ?
I What about Nonlinear Kernels ?
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