AI in the Sciences and Engineering HS 2025: Lecture 9

Siddhartha Mishra

Computational and Applied Mathematics Laboratory (CamLab) Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center (and) Swiss National AI Institute (SNAI), ETH Zürich, Switzerland.

What we have learnt so far?

- ► AIM: Learn PDEs using Deep Neural Networks
- Operator Learning: Learn the PDE Solution Operator from data.
- Examples: FNO, CNO, VIT, scOT etc.
- Very successful on PDEs on 2D Cartesian Domains !!
- What are the caveats ?

What about Time-Dependent PDEs?

Operator Learning for Time-Dependent PDEs

PDEs of the Abstract form:

$$u_t + \mathcal{L}(t, x, u) = 0, \quad u(0) = \bar{u}.$$

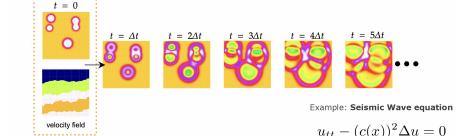
- ▶ Solution operator: $S:(0,T)\times X\mapsto X$; $S(t,\bar{u})=u(t)$
- ▶ Fo any time increment: $S(\Delta t, u(t)) = u(t + \Delta t)$.
- Data is the form of Trajectories:

$$(u(0), u(t_1), u(t_2), \dots, u(T)) = (\bar{u}, \mathcal{S}(t_1, \bar{u}), \mathcal{S}(t_2, \bar{u}), \dots, u(T))$$

= $(\bar{u}, \mathcal{S}(t_1, \bar{u}), \mathcal{S}(t_2 - t_1, u(t_1)), \dots, u(T))$

- Operator Learning Task: Continuous-in-Time evaluations !!
- ▶ Given \bar{u} + BC: generate the solution trajectory u(t), for all $t \in (0, T]$

Operator Learning for Time-dependent PDEs



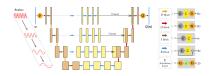
Autoregressive Evaluation

- ▶ Trajectory data on uniform timepoints: $u(t_k) = u(k\Delta t)$.
- ▶ Define $NO_{\Delta t}(u(t_{\ell})) \approx u(t_{\ell} + \Delta t)$: Next Time Prediction
- ► Then Autoregressive Rollout is

$$u(t_k) \approx \underbrace{\mathrm{NO}_{\Delta t} \circ \ldots \mathrm{NO}_{\Delta t} \circ \mathrm{NO}_{\Delta t}}_{k \text{ times}} \bar{u}.$$

- Issues:
 - Needs uniform spacing.
 - Long rollouts lead to training issues.
 - Error Accumulation
 - Only evaluation at discrete time levels

Time Conditioning



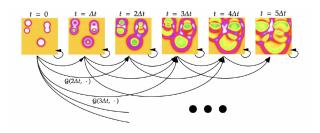
- ► Lead Time as an Input Channel
- ► CNO $(\bar{t}, u(t)) \approx S(\bar{t}, u(t)) = u(t + \bar{t}).$
- Add Conditional Normalizations after each layer !!

$$\mathcal{N}(w) = g_N(t) \odot \frac{w - \mathbb{E}(w)}{\sqrt{\mathrm{Var}(w) + \epsilon}} + h_N(t),$$

- $ightharpoonup g_N, h_N$ are MLPs in general but Linear suffices.
- ► Instance, Batch, Layer Normalizations.

Training Strategies I

- One at a Time training based on:
- ▶ Input-Target Pairs: \bar{u} , $S(t_k, \bar{u}) = u(t_k)$
- ▶ For $t_K = T$, K training samples per trajectory.

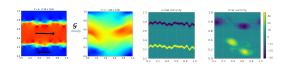


Training Strategies II

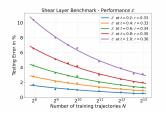


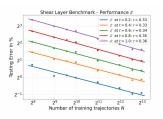
- all2all training based on:
- ▶ Input-Target Pairs: $u(t_i)$, $S(t_j t_i, u(t_i)) = u(t_j)$, $\forall i < j$
- ► Leverages Semi-group property of Solution Operator.
- $ightharpoonup \frac{K^2+K}{2}$ training samples per trajectory !!
- ► Inference is Direct or Autoregressive
- Multiple possibilities for Autoregressive Rollouts
- Evaluation at any time t > 0 including Out-of-distribution times.

Results for Shear Layer

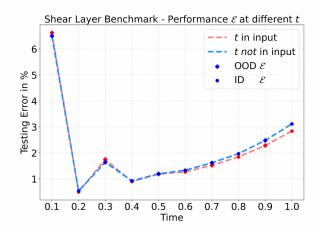


Error vs. Time

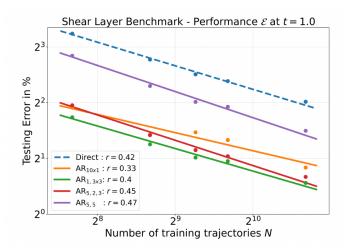




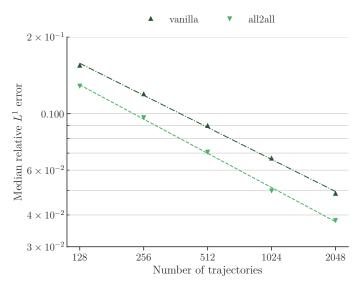
Results at OOD time levels.



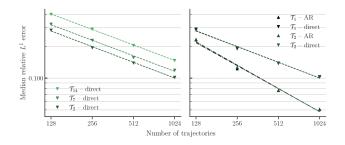
Results for Different Inference Strategies.



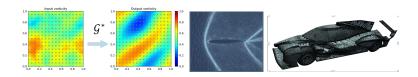
Results for Different Training Strategies.



Further Results



Caveat II: PDEs on Arbitrary Domains



- Discussion so far has only focussed on Cartesian Domains
- Discretized with Uniform Grids.
- Most Real world PDEs are on Arbitrary Domains
- Discretized with Unstructured Grids or Point Clouds
- ▶ Need to handle such Data !!

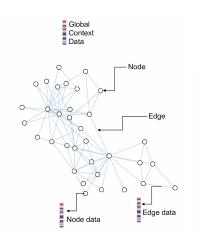
Summary of Available Methods

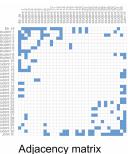
- Posing problem on Cartesian Domain through Masking.
- Direct Spectral Evaluations for FNO
 - ▶ DSE proposed in Lingsch, SM et. al., 2024
- Graph Neural Networks

Learning Graph Structured data

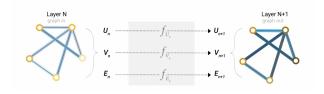
- Input data on Graphs is ubiquitous:
 - ► Social networks, Recommender and Transport systems.
 - Chemistry and Biology (Molecules)
 - Mesh-based numerical simulations in Scientific computing

Basics on Graphs



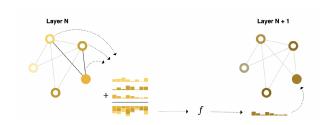


What is a Graph Neural Network?



- ► GNN is a composition of layers.
- ► Each layer updates Node + Edge features

Message Passing is the basis of all GNNs

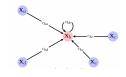


► Generic form of Message Passing:

$$\mathsf{h}_i := f\left(\mathsf{v}_i, igoplus_{j \in \mathcal{N}_i} \Psi(\mathsf{v}_i, \mathsf{v}_j)\right)$$

- \triangleright f, Ψ are MLPs.
- ► ⊕ is an aggregation function

Ex I: Graph Convolutional Network (GCN)



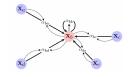
Generic form of GCN:

$$\mathsf{h}_i := f\left(\mathsf{v}_i, igoplus_{j \in \mathcal{N}_i} c_{ij} \Psi(\mathsf{v}_j)
ight)$$

Specific example:

$$\mathsf{h}_i := g\left(\sum_{j \in \mathcal{N}_i \cup \{\mathsf{v}_i\}} rac{1}{\sqrt{ ilde{d}_i ilde{d}_j}} \mathsf{W} \mathsf{v}_j
ight), \quad ilde{d}_i = 1 + \sum_j \mathsf{A}_{ij}$$

Ex II: Graph Attention Network (GAT)



Generic form of GAT:

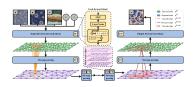
$$h_i := f\left(v_i, \bigoplus_{j \in \mathcal{N}_i} \alpha(v_i, v_j) \Psi(v_j)\right)$$

Specific example:

$$\mathsf{h}_i := g\left(\sum_{j \in \mathcal{N}_i \cup \{\mathsf{v}_i\}} \alpha(\mathsf{v}_i, \mathsf{v}_j) \mathsf{W} \mathsf{v}_j\right),$$

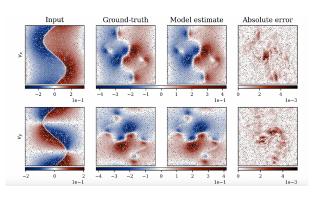
 $ightharpoonup \alpha$ is a softmax based weight.

GNN for Operator Learning of PDEs?

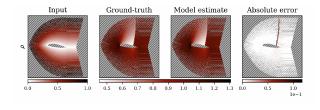


- ► RIGNO of Mousavi, SM, et. al., 2024
- ▶ Based on general MPNNs
- Multiple modifications to ensure:
 - Multiscale Information processing.
 - Temporal Continuity
 - Resolution Invariance

NS-SVS

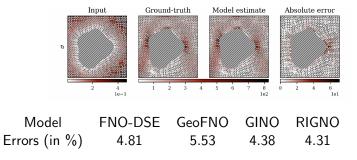


Flow Past Airfoills

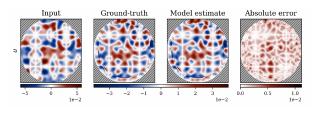


Model FNO-DSE GeoFNO GINO RIGNO Errors (in %) 1.99 4.48 2.00 1.09

Plasticity



Waves in a Circle



Model FNO-DSE GeoFNO GINO RIGNO Errors (in %) 5.52 13.1 5.82 5.35

RIGNO is very accurate

Dataset (unstructured)	Median relative L^1 error [%]				
	RIGNO-18	RIGNO-12	GeoFNO	FNO DSE	GINO
Heat-L-Sines	0.04	0.05	0.15	0.53	0.19
Wave-C-Sines	5.35	6.25	13.1	5.52	5.82
NS-Gauss	2.29	3.80	41.1	38.4	13.1
NS-PwC	1.58	2.03	26.0	56.7	5.85
NS-SL	1.28	1.91	24.3	29.6	4.48
NS-SVS	0.56	0.73	9.75	26.0	1.19
CE-Gauss	6.90	7.44	42.1	30.8	25.1
CE-RP	3.98	4.92	18.4	27.7	12.3
ACE	0.01	0.01	1.09	1.29	3.33
Wave-Layer	6.77	9.01	11.1	28.3	19.2
AF	1.00	1.09	4.48	1.99	2.00
Elasticity	4.31	4.63	5.53	4.81	4.38
(uniform grid)	RIGNO-18	RIGNO-12	CNO	scOT	FNO
NS-Gauss	2.74	3.78	10.9	2.92	14.24
NS-PwC	1.12	1.82	5.03	7.11	11.24
NS-SL	1.13	1.82	2.12	2.49	2.08
NS-SVS	0.56	0.75	0.70	0.99	6.21
CE-Gauss	5.47	7.56	22.0	9.44	28.69
CE-RP	3.49	4.43	18.4	9.74	31.19
ACE	0.01	0.01	0.28	0.21	0.60
Wave-Layer	6.75	8.97	8.28	13.44	28.01

- ▶ But not Efficient (more than 2d of training) !!
- Due to Repeated Sparse Memory Access

